Режим фокусировки

Механика

Кольца зумирования и фокусировки должны вращаться плавно, без скрипа и заедания, но и не слишком свободно, чтобы фокусировка не сбивалась. Выдвинув «хобот» (выдвигающуюся часть) объектива до упора следует слегка покачать его — чем меньше люфт, тем лучше.

Если объектив направить вертикально вверх/вниз, то двигающийся оптический блок недолжен смещаться из выбранного положения (зумирования/фокусировки) под действием силы тяжести (в некоторых моделях телезумов для предотвращения этого делают специальный фиксатор).

Обратите внимание на байонет — установленный объектив должен жестко сидеть на камере (не должно быть сильных люфтов). 4

4

Как выглядит работа контрастного автофокуса

Камера открывает затвор и получает картинку. По картинке камера не может сказать, в какую сторону ей двигать линзы, чтобы получить более контрастное изображение, а соответственно и более точный фокус. Потому камера просто двигает линзы в определенном направлении, например, вперед. После этого опять считывает изображение и сравнивает значение контраста картинки с изначальным. Если контраст упал, значит мы двигаем линзы не в ту сторону. И камера смещает линзы в обратном направлении, дальше, чем они были в самом начале на определенное расстояние (определяется прошивкой камеры). Опять сравнивает картинку — перелет или недолет?

Есть определенная методика, как с помощью минимального количества таких «пристрелов» попасть в нужное место, в фокус. Но мы не будем углубляться, так как это нам не нужно на данный момент. Кто хочет — может сам поискать, я уже не помню и название метода.

Последовательность шагов в контрастном методе определения правильного фокуса отличается для разных производителей камер. Можно делать большие скачки и постепенно уменьшать диапазон, отлавливая максимум контраста (напоминает методику поиска собакой), а можно пройтись по всему диапазону фокусировки последовательно маленькими шажками, пока не переступишь порог за которым начнется падение контраста.

Предлагаю подвигать ползунки на данной анимации, любезно предоставленной Стэнфордским университетом

К сожалению, у Вас не установлен flash плеер.

Но зеркальные камеры в основном полагаются как раз на фазовый метод определения фокуса, который гораздо быстрее работает, так что мы перейдем к нему.

Фазовый метод автофокуса

Фазовый метод автофокуса отличается от контрастного метода тем, что позволяет на одном единственном измерении сделать вывод в какое место нужно переместить линзы объектива для достижения оптимального фокуса.

Ниже представлена схема фазового автофокуса. Многие видели основное зеркало фотокамеры, которое поднимается в момент съемки и издаёт хлопающий звук, но все ли знают про дополнительное зеркало, которое обеспечивает работу фазового автофокуса в зеркальных камерах?

То, что на схеме выглядит как маленькая спичка, прикрепленная к середине большой спички (основное зеркало) на самом деле небольшое зеркало, которое работает за счет полупрозрачного окошка в основном зеркале.

Фазовый метод автофокуса

Где же находится это окошко? Давайте посмотрим.

камера Canon 1D mark II N (профессиональная линейка камер Canon), вид на опущенное зеркало.

Вроде бы наличие полупрозрачного окошка неочевидно, но давайте приподнимем основное зеркало.

сквозь основное зеркало (через полупрозрачное окошко) видно дополнительное зеркало

Итак, мы видим полупрозрачное окошко, дополнительное зеркало и нам посчастливилось увидеть крышку датчика автофокуса. Сам он находится поглубже и имеет довольно сложное устройство, которое мы разберем чуть ниже.

На камере Canon 5D mark II полупрозрачное окошко гораздо более очевидно.

основное зеркало и полупрозрачное окошко в нём на камере Canon 5D mark II

видно основное зеркало, полупрозрачное окошко и дополнительное зеркало на камере Canon 5D mark II

видно окошко датчика фазового автофокуса на камере Canon 5D mark II

система фазового автофокуса в разрезе

Когда мы разобрались с тем, где находится датчик и как на него попадают лучи света, посмотрим как он работает.

Работа электроники

Проверьте:

  • работу автофокуса в автоматическом (AF) и ручном (MF) режиме (подтверждение фокусировки);
  • работу диафрагмы — воспользуйтесь кнопкой предварительного просмотра глубины резкости (DOF Preview);
  • работу вспышки — для тех объективов, которые сообщают дистанцию фокусировки и камера умеет это использовать. Речь идет о системе E-TTL II: объект съемки должен быть одинаково освещен вспышкой на разных расстояниях.

Объектив лучше проверять на той камере, на которой он будет использоваться. Бывает, что объектив не состыковывается с «тушкой» и тогда при включении фотоаппарата выдается ошибка (такое, например, было замечено с объективом EF 50/1.8 на 300D).

Часть II. Тестирование

Самый лучший тест для объектива — это его использование по назначению с последующим просмотром отснятого материала. То есть если вы планируете снимать «пейзаж», то нужно выйти на улицу и сделать снимок, чтобы в кадр попало много мелких деталей. Потом на компьютере просмотреть отснятое на предмет мыла, хроматических аберраций, дисторсии и т.п. Если объектив нужен для «портрета», то навестись, например, на глаза или лицо, а затем по снимкам оценить точность фокусировки, резкость, боке и так далее в таком духе.

Если же такой возможности нет, то можно попросить в магазине выделить немного места для следующих простых тестов.

5

Чёткость изображения

Чёткость изображения, или разрешение камер наблюдения – это способность устройства уверено фиксировать минимальные размеры объекта наблюдения на определённом расстоянии до камеры.

Разрешение, и соответственно, чёткость изображения зависят:

  • от качества объектива и его фокусного расстояния;
  • от технических характеристик ПЗС-матрицы (количество и качество пикселей);
  • от расстояния: «объектив – наблюдаемый объект»;

Если используется визуальное приёмное устройство (монитор), то добавляются:

  • качество преобразования сигнала в приёмном устройстве (видеорегистраторе);
  • технические характеристики воспроизводящего прибора (монитора);

Для разных камер, – аналоговых и по IT-технологиям (цифровые) чёткость определяется по своим характеристикам.

Основные характеристики

В любом оптико-механическом устройстве, в том числе и в камере наблюдения, есть ряд важных характеристик, по которым определяется эффективность их работы:

  • фокус и светочувствительность объектива;
  • разрешающая способность;
  • формат ПЗС-матрицы;
  • возможность цифровой обработки сигнала;
  • угол обзора видеокамеры;

Все эти характеристики тесно взаимосвязаны между собой и определяют, собственно мощность оптического инструмента.

Рассмотрим одним из важнейших показателей – угол обзора видеокамеры. Чтобы было понятнее, что это такое, можно провести аналогию с человеческим оптическим инструментом, глазом – это угол зрения, охват максимально видимого пространства.

Приложения

9.1. Как узнать дату изготовления объектива

На некоторых объективах Canon (обычно L-серии) пишут дату изготовления — в районе байонета есть код вида «US0207«. Расшифровывается следующим образом:

  • «U» — код предприятия (U = Utsunomiya, Japan; F = Fukushima, Japan; O = Oita, Japan);
  • «S» — год изготовления (нумерация идет с 1960: A=1960, B=1961, C=1962, …, Z=1985, затем по второму кругу A=1986, B=1987 и т.д.):

    A = 1986, 1960
    B = 1987, 1961
    C = 1988, 1962
    D = 1989, 1963
    E = 1990, 1964
    F = 1991, 1965
    G = 1992, 1966
    H = 1993, 1967
    I = 1994, 1968
    J = 1995, 1969
    K = 1996, 1970
    L = 1997, 1971
    M = 1998, 1972
    N = 1999, 1973
    O = 2000, 1974
    P = 2001, 1975
    Q = 2002, 1976
    R = 2003, 1977
    S = 2004, 1978
    T = 2005, 1979
    U = 2006, 1980
    V = 2007, 1981
    W = 2008, 1982
    X = 2009, 1983
    Y = 2010, 1984
    Z = 2011, 1985

  • «02» — месяц изготовления (февраль);
  • «07» — последние две цифры ничего не значат.

Например, объектив EF 24 f/2.8 с кодом «US0207» был изготовлен в феврале 2004-го года (выпускается с ноября 1988), а объектив EF 24-70 f/2.8 L с кодом «UU0610» изготовлен в июне 2006-го (выпускается с ноября 2002-го).

9.2. Проверка объектива на «серость»

Как проверить «белый» объектив или «серый»? «Белый» значит официально завезенный в Россию, «серый» — не официально

С точки зрения качества оптики не важно «белый» объектив или «серый», главное чтобы не был «желтым» (с плохими стеклами)

Разница может обнаружиться при обращении в сервис для ремонта по гарантии. Обычно фирмы торгующие «серой» техникой выдают собственные гарантийные талоны, и соответственно для бесплатного ремонта вы должны отнести технику только им. Не факт, что они будут чинить эту технику в сертифицированном сервисном центре. И также никто не гарантирует, что эта фирма не закроется раньше, чем наступит гарантийный случай.

На «белую» технику выдается официальный гарантийный талон. Например, для Canon он выглядит следующим образом:

С таким талоном вы имеете право на бесплатный гарантийный ремонт в любом авторизированном сервисном центре Canon на территории СНГ (только в той стране СНГ, в которой данное изделие было приобретено!). При заполнении талона обязательно проверьте наименование изделия, серийный номер, дату продажи, наименование торговой организации, её адрес, печать и подпись представителя торговой организации или продавца. Также проверьте правильность суммы на чеке. Не выбрасывайте упаковку (!), если она занимает много места, сложите картонки. Упаковка может понадобиться при замене или возврате товара, а также при продаже, например, в комиссионном магазине (с упаковкой лучше берут!).

Если вы купили «серый» объектив не расстраивайтесь! Есть мнение, что в Россию очень часто сбагривают технику с небольшими дефектами, которая не прошла контроль для Европы или Америки — так что «серая» техника не факт что это плохо!

Для техники Nikon проверить является ли объектив «белым» можно на сайте www.nikon.ru. Техническая поддержка -> Моя техподдержка -> Создать учетную запись -> Моя продукция), после этого вам предложат выбрать продукт и ввести серийный номер.

Ссылки по теме:

  • EF Lens Work III. «Глаза EOS» (книга в PDF). (www.canon-europe.com)
  • Focus Testing by Bob Atkins (www.photo.net)
  • Ответы Чака Уэстфолла (Chuck Westfall, Canon USA) на вопросы в форуме (www.openphotographyforums.com)
  • Nikon D70 Focus test chart (http://www.focustestchart.com)
  • Canon autofocus information (http://www.fredmiranda.com/)
  • Защитные и ультрафиолетовые светофильтры (photo-element.ru)
  • Canon Lens Aging — How Old Is That Lens? (the-digital-picture.com)
  • В этом блоге приведены разные мишени для проверки на бэк-фокус (evtifeev.com)
  • Сравнение автофокуса Canon 1000D vs 550D
  • Проверка объектива на бэк-фокус / фронт-фокус

Состояние стекол

Осмотрите стекла на наличие царапин и сколов. Если поднести объектив поближе к лампе (практически вплотную), то можно увидеть внутри пыль, ворсинки,  пузырьки и т.п. Чтобы лучше рассмотреть все это «добро», расположите объектив под углом к свету, чтобы за ним образовался темный фон.

Оцениваем количество внутренней пыли и наличие пузырьков в линзах

Обычно небольшое количество пыли и крохотных пузырьков допустимо. Мне не удалось найти допуски для Canon, Nikon и другой импортной оптики, но вот, что написано в инструкции для отечественного «зенитовского» объектива Юпитер-21М: «на поверхности оптических деталей государственными стандартами допускается наличие следующих незначительных дефектов: царапин шириной не более 0,02 мм на каждой поверхности линзы и суммарной длиной не более двух световых диаметров, точек диаметром до 0,3 мм в количестве не более 5 штук, небольшое количество пылинок и ворсинок ваты длиной не более 3 мм и числом не более двух на весь объектив».

На практике наличие царапин и пузырьков на передней линзе практически не влияет на качество изображения, но может оказывать психологическое воздействие, особенно при покупке дорогостоящей оптики. А вот царапины и пузырьки на задней линзе — это плохо! Тут правило простое — чем дефекты ближе к матрице, тем большее влияние они оказывают на изображение!

Примечание: если вы внутри оптического блока заметили пыль, то расстраиваться не стоит. Так или иначе она появляется в любом объективе… со временем, даже если это хорошо прорезиненная оптика высокого класса.

3

Блокировка фокусировки

Блокировка фокусировки применяется для изменения компоновки кадра после фокусировки, что позволяет сфокусироваться на объекте, который в конечной компоновке кадра будет вне точки фокусировки. Если фотокамера не может сфокусироваться с помощью автофокусировки ( ), блокировку фокусировки также можно использовать для изменения композиции фотографии после фокусировки на другом объекте, расположенном на том же расстоянии, что и исходный объект. Блокировка фокусировки наиболее эффективна, если выбран параметр, отличный от автоматического выбора зоны АФ для режима зоны АФ ( ).

  1. Выполните фокусировку.

    Расположите объект в выбранной точке фокусировки и нажмите спусковую кнопку затвора наполовину, чтобы включить фокусировку. Проверьте, чтобы в видоискателе появился индикатор фокусировки (I).

  2. Заблокируйте фокусировку.

    Режим фокусировки AF-C ( ): при нажатой наполовину спусковой кнопке затвора () нажмите центральную кнопку вспомогательного селектора (), чтобы заблокировать и фокусировку, и экспозицию (в видоискателе будет отображаться символ AE-L). Фокусировка будет оставаться заблокированной, пока нажата центральная кнопка вспомогательного селектора, даже если потом Вы уберете палец со спусковой кнопки затвора.

    Спусковая кнопка затвора

    Вспомогательный селектор

    Режим фокусировки AF-S: при появлении индикатора фокусировки (I) фокусировка блокируется автоматически и остается в этом состоянии до тех пор, пока со спусковой кнопки затвора не будет убран палец. Фокусировку также можно заблокировать, нажав центральную кнопку вспомогательного селектора (см. выше).

  3. Измените компоновку фотографии и выполните съемку.

    Фокусировка будет оставаться заблокированной между снимками, если Вы будете удерживать спусковую кнопку затвора нажатой наполовину (AF-S) или держать нажатой центральную кнопку вспомогательного селектора, что позволяет делать последовательно несколько снимков с одинаковой настройкой фокусировки.

Не меняйте расстояние между фотокамерой и объектом, пока заблокирована фокусировка. Если объект переместился, выполните фокусировку еще раз для нового расстояния.

Блокировка фокусировки с помощью кнопки «AF-ON»

Во время фотосъемки с использованием видоискателя фокусировку можно заблокировать с помощью кнопки «AF-ON» вместо спусковой кнопки затвора ( ). При выборе Только «AF-ON» для пользовательской настройки a8 (Активация АФ, Активация АФ) фотокамера не будет фокусироваться, когда спусковая кнопка затвора нажимается наполовину; вместо этого фотокамера будет фокусироваться при нажатии кнопки «AF-ON», во время чего фокусировка будет заблокирована и останется заблокированной до повторного нажатия кнопки «AF-ON».

См. также

Для получения информации об использовании спусковой кнопки затвора для блокировки экспозиции см. A > Пользовательская настройка с1 (Блок. АЭ спусков. кнопкой, Блок. АЭ спусков. кнопкой).

Получение хороших результатов съемки при автофокусировке

Автофокусировка работает неправильно при перечисленных ниже условиях. Спуск затвора может быть заблокирован, если фотокамера не может произвести фокусировку при этих условиях, или может появиться индикатор фокусировки (I), и фотокамера издаст звуковой сигнал, что позволит осуществить спуск затвора даже в том случае, если объект не сфокусирован. В этих случаях воспользуйтесь ручной фокусировкой ( Ручная фокусировка) или воспользуйтесь блокировкой фокусировки ( ), чтобы сфокусироваться на другом объекте на том же расстоянии, а затем измените композицию фотографии.

Между объектом и фоном мало или вообще нет контраста.

Пример: объект того же цвета, что и фон.

В точку фокусировки попадают объекты, находящиеся на разном расстоянии от фотокамеры.

Пример: объект съемки находится внутри клетки.

Объект имеет регулярный геометрический рисунок.

Пример: жалюзи или ряд окон высотного здания.

Точка фокусировки содержит области с резким контрастом яркости.

Пример: объект наполовину в тени.

Объекты на заднем плане больше объекта съемки.

Пример: здание, находящееся сзади предмета съемки, попадает в кадр.

Объект съемки состоит из множества мелких деталей.

Пример: поле цветов или другие мелкие или одинаковые по яркости объекты.

Тест на хроматические аберрации

Хроматические аберрации (ХА) наиболее ярко выражены у зум-объективов и отчетливо проявляются на сильно контрастирующих объектах, например, вокруг веток деревьев на фоне яркого неба. Это хроматические аберрации увеличения (в англ. литературе встречается термин «lateral chromatic aberration»).

а) до корректировки ХА б) после корректировки ХА:Fix Red/Cyan Fringe: -25,Fix Blue/Yellow Fringe: +20

Пример хроматических аберраций увеличения: камера 300D, объектив SIGMA AF 18-50 f/3.5-5.6 DC, f=18мм, диафрагма f/8; конвертирование из RAW с помощью Adobe Camera RAW. Как видно из рисунка цветную бахрому можно уменьшить (например, с помощью RAW-конвертора). Но при существенных аберрациях даже Photoshop не в силах справится с ХА полностью

Еще существуют хроматические аберрации положения (в англ. литературе встречается термин «longitudinal chromatic aberration»). Один из простых способов оценить их — это сделать макроснимок белого листа бумаги с черным текстом под углом.

а) EF 100 f/2.8 MACRO USM б) EF 24-70 f/2.8 L

Тест на хроматические аберрации положения: камера 300D, диафрагма f/2,8; конвертирование из RAW с помощью Capture One (параметры по умолчанию). ХА положения проявляются в виде окрашивания контрастных объектов в зоне нерезкости

Как видно зум-объектив EF 24-70 f/2.8 L (высокого класса!) имеет ощутимые хроматические аберрации положения: зеленого цвета за плоскостью фокусировки и красного цвета перед ней. Если цветные ореолы вокруг четких границ еще как-то можно попытаться «побороть» в графическом редакторе, то ХА в зоне нерезкости практически неподдаются «лечению» (разве что сделать изображение монохромным, например, черно-белым).

8

Режимы автофокусировки

3 марта 2011
Искандер Рубинин

Из-за того, что система автофокусировки постоянно находится в процессе настройки объектива для поиска участка изображения с более высокой контрастностью, некоторые фотокамеры предлагают различные режимы работы автофокусировки (AF). Выбор режима диктуется, прежде всего, самим объектом съемки.

Автоматический режим с приоритетом фокуса

Этот режим, который можно назвать одиночным режимом, даст лучший результат при съемке самых обычных сюжетов, имеющих статичность и определенное расстояние от камеры. Как правило, съемка возможна только после того, как система AF «даст добро», сфокусировав объектив на выбранном участке. Не до конца нажатая кнопка спуска затвора дает возможность системе выполнить необходимую настройку, стабилизировать изображение, и лишь потом произвести съемку объекта.

Непрерывный режим автофокусировки

При этом режиме процесс настройки идет непрерывно до самого момента нажатия на спуск, блокировка автофокуса обычным способом невозможна. Это не самый удачный подход к реализации задуманного сюжета, особенно это касается движущихся объектов, так как между спуском затвора и фиксацией изображения существует временная задержка (время на закрытие диафрагмы, сдвиг зеркала, открытие затвора). Её значение, даже с быстрым процессором в цифровых «зеркалках» может достигать 100 миллисекунд (0,1 сек) и получить снимок хорошего качества близко бегущего олимпийца, например, в спортивной фотографии, не удасться, т.к. за это время спортсмен преодолеет почти целый метр.

Прогнозирующая (предиктивная или упреждающая) функция автофокусировки

Лучшие цифровые камеры имеют на «своём борту» усовершенствованный вариант непрерывного режима AF, так называемую «прогнозирующую автофокусировку«. Реализация этой функции основана на измерении скорости объекта съемки, далее — настройке автофокуса с учетом задержки диафрагмы, вычисления значений фокусировки и последующей корректировке непосредственно перед фиксацией изображения.Естественно, такая технология лежит за пределами человеческих возможностей. В прогрессивных моделях фотокамер добавлена дополнительная корректировка задержки диафрагмы. Наличие и использование нескольких датчиков одновременно, позволяет учитывать замедление или ускорение от камеры или к ней, затем — сделать необходимые расчеты и поправки. Их количество, выполняемое системой авторегулировки, напрямую зависит не только от скорости снимаемого объекта и расстояния до него, но и используемого фокусного расстояния. Чем больше фокусное расстояние и ближе объект — тем быстрее должен подстраиваться объектив, соответственно, требования к весу объектива и мощности мотора, перемещающего объектив, становятся выше. Помимо высокой скорости процессора, это одно из условий для оптимальной работы прогнозирующего автофокуса.

Немного теории и истории

Объектив фокусируется не на конкретном объекте, а на определённой дистанции. Объектив, как и любой оптический прибор (например, проектор, бинокль, микроскоп, увеличительное стекло), может быть сфокусирован только на определённом расстоянии. И только объекты, находящиеся на этой дистанции, будут в кадре резкими. На некоторых объективах даже предусмотрена специальная шкала, показывающая дистанцию фокусировки в метрах. Во время фокусировки в объективе туда-сюда двигается блок линз, подобно тому, как мы двигаем обычную лупу, разглядывая мелкие предметы: лупа покажет их резкими только тогда, когда будет находиться на нужном расстоянии от них.

Nikon D810 / Nikon 85mm f/1.4D AF Nikkor

При наведении на резкость мы настраиваем объектив на определённую дистанцию фокусировки.

Nikon D810 / Nikon 85mm f/1.4D AF Nikkor

Ошибка с этим параметром грозит тем, что главный объект снимка получится нерезким.

Интересное следствие из предыдущего пункта: если в кадре есть несколько объектов, которые расположены на разных дистанциях, то просто так на всех них сфокусироваться не получится. Но есть решение: уместить все объекты в глубину резкости. О том, как с ней работать, мы писали в отдельных уроках. Отметим, что на устройствах с очень маленьким по размеру сенсором (например, на смартфонах или компактных фотоаппаратах) глубина резкости будет очень большой. Именно поэтому на такие устройства легко сделать кадр, где резким получится как передний, так и задний план. Но по этой же причине с ними практически невозможно размыть фон на снимке.

Раньше фотографы самостоятельно фокусировали объектив. Сегодня функция ручной фокусировки сохранилась практически в любой фотокамере. А в зеркальной фототехнике она присутствует всегда. Минус ручной фокусировки в том, что для точного наведения на резкость вам потребуется много времени. А если ваш объект ещё и двигается, то ручная фокусировка превращается в настоящее испытание нервов, координации и зрения фотографа. Начиная с 80-х годов прошлого столетия стали развиваться системы автоматической фокусировки. Тогда компания Nikon представила свою первую камеру, наделённую автофокусом — Nikon F3AF.

Фотоаппарат Nikon F3AF — первая автофокусная зеркальная камера от Nikon.

Nikon FM10 — единственная зеркалка Nikon без автофокуса, которую можно до сих пор купить не только на вторичном рынке, но и в официальных магазинах. И да, к тому же это плёночная фотокамера.

C тех пор фотокамеры, наделённые функцией автофокуса, вытеснили более простые модели, лишённые её. Сегодня практически не выпускают фотоаппараты без автоматической фокусировки.

Nikon D7200 — современная камера с продвинутой системой автофокуса.

Можно говорить о том, что в наши дни автофокус стал неотъемлемой частью современной фотокамеры. Системы автоматической фокусировки совершенствуются с каждым годом, становясь всё быстрее, чувствительнее и гибче в работе.

Автофокус

Система автофокусировки в современных камерах, как правило, не дает сбоев. Будь то фотографирование портрета или репортажа, электроника камеры сделает всю работу. Но все же бывают случаи, когда система автофокусировки промахивается или же в кадре получаются резкими совсем не те детали и объекты, которые Вам нужны. Почему это происходит? Ведь в зеркальных аппаратах количество датчиков фокусировки может достигать более полусотни. И, соответственно, производители уверяют фотографов, что при таком количестве точек фокусировки автоматика сможет безошибочно определять наиболее значимые объекты, которые должны получиться в кадре максимально четкими

Для того, чтобы понять суть проблемы, необходимо разобраться, как работает автофокус. В зеркалке начального уровня датчиков фокусировки обычно от 9 и более. Для осуществления наведения на резкость она получает данные от всех 9 датчиков. Электроника измеряет дистанцию до каждого участка сцены, определяет наиболее близкий к себе предмет, совпадающий с точкой фокусировки, и блокирует автофокус в определенном положении. Как следствие, резким на фотоизображении может оказаться совсем не то, что Вам нужно.

Особенно часто такая проблема возникает при съемке на длиннофокусную и стандартную оптику с малой глубиной резкости. В случае с контрастной системой автофокусировки в соответствии с определенными алгоритмами камера выбирает не самый близкий к себе объект, а самый контрастный. Но суть от этого не меняется. Как справиться с подобной проблемой? Задействовать ручной фокус.

Тестирование защитного фильтра

Обычно после приобретения объектива для него покупается защитный фильтр: PROTECT или NEUTRAL. Также подойдет ультрафиолетовый UV (фактически для цифры выполняющий только защитную роль), SkyLight 1A или 1В (со слабым розоватым оттенком) или HAZE (против дымки). Назначение этих фильтров на цифре предохранять оптику от внешних механических и химических воздействий, то есть от всякого рода загрязнений: пыли, капель дождя, жирных пальцев, каменьев (и такое бывает!), смолы (которая внезапно падает с веток и которую можно оттереть только вместе с просветляющим напылением) и т.п.

В идеале защитный фильтр не должен оказывать влияния на качество изображения. Однако на практике это не всегда так. За хорошее (защиту оптики) приходится платить: все фильтры без исключения могут привести к паразитным бликам. Поэтому, выбирая защитный фильтр, целесообразно его протестировать (на том объективе, для которого он приобретается).

а) SONY UV (цена 200 руб.) б) KENKO SKYLIGHT 1B (цена 490 руб.)
в) B+W UV-HAZE (цена 900 руб.) г) без фильтра

Тестирование защитных фильтров на блики: диаметр 58 мм, объектив SIGMA AF 18-50 f/3.5-5.6 DC, камера 300D, фокусное f=44 мм, диафрагма f/5,6
(максимальная для данного фокусного). Наихудший результат показал малоизвестный фильтр хорошо известной фирмы SONY (множественные отражения). Фильтры B+W и KENKO справились с задачей получше (B+W немного лучше — его «зайчик» менее яркий)

Для теста на блики подойдет затемненная комната и обычная настольная лампа. Направляем камеру так, чтобы источник света был по центру кадра — фильтр не должен давать ярких цветных ореолов вокруг лампы. Блики обычно проявляются при косых лучах (лампа под углом). Чем менее заметны отражения в этом положении лампы тем качественнее фильтр. Для полноты теста попробуйте направить камеру под различными углами к источнику света и на разных расстояниях.

Блики может давать и сам объектив. Поэтому поймав «зайчик» следует также сделать снимок без фильтра не меняя положения камеры (используйте штатив). Это даст возможность отличить где отражения от фильтра, а где от самого объектива.

Представленный тест позволяет выяснить насколько сильно блики зависят от фильтра и имеет ли смысл снимать «защиту», чтобы уменьшить отражения когда в кадре есть яркий свет, например, солнце.

На этом все. При походе за объективом в магазин не забудьте подзарядить аккумулятор камеры, взять штатив, тестовую шкалу, миру и скотч. А также составить краткий план тестирования (на основании вышеизложенного :-)). Лучше семь раз проверить до покупки, чем потом расстраиваться и обращаться в сервис.

9

Аналоговые видеокамеры

 Разрешение телевизионных линий

Для данного типа камер применяется показатель ТВЛ – телевизионные линии. Показывает, какое количество чередующихся чёрно-белых линий размещается на мерном участке в вертикальной или горизонтальной плоскостях.

Аналоговые камеры, по степени разрешения, подразделяются на приборы:

  • со средним качеством изображения: около 500 пикселей, – соответствует 380…420 ТВЛ;
  • высокая степень разрешения: свыше 750 пикселей, – больше 1000 ТВЛ, соответственно;

В цифровых, IP-камерах, показатель чёткости определяется пикселями, точнее, числом, получаемым от перемножения количества пикселей по вертикали и горизонтали, соответственно. В сопроводительных инструкциях указывается это число, выраженное в мегапикселях.

Многим знакома эта характеристика – так характеризуются свойства видеокамеры в мобильном телефоне.

Внешний вид

1.1. Потертости и царапины

Если на клеммах есть царапины, значит объектив уже одевали на камеру. По величине царапин можно косвенно судить о том, как часто линза использовалась.

Осмотр клемм

а) новый объектив, 1 месяц — царапины почти не заметны

б) объективу более 2-х лет — на клеммах сформировалась четкая дорожка

Однако даже чистые клеммы еще ни о чем не говорят, ведь объектив могли никогда не снимать с камеры (если он, например, единственный). Поэтому смотрим дальше: по потертостям и царапинам на кольцах зумирования и байонете также можно судить о «свежести» объектива.

1.2. Следы удара (падения)

Выясняем: не роняли ли объектив? Проверяем, есть ли на корпусе следы падения: вмятины на металлических частях, трещины на пластмассовых и т.п. Падение может привести к смещению оптических элементов, что сделает объектив не годным. Если объектив слегка потрясти, то эти самые элементы (линзы) не должны цокать. В некоторых моделях допускается небольшое «пластиково-металлическое» громыхание, которое обычно издает привод авто-фокуса.

1.3. Был ли в ремонте?

Царапины на винтах могут свидетельствовать о том, что объектив разбирался (был в ремонте). Ремонт в специализированном сервисе не так страшен, хуже, если в оптике ковырялись дилетанты. Осмотрите винты — сорванные и погнутые шлицы говорят о неквалифицированном ремонте.

Осмотр винтов на предмет деформаций
а) новый объектив: на винтах нет царапин, шлицы прямые б) объектив из комиссионки: около винта царапина, шлицы погнуты — похоже объектив ремонтировали и не очень аккуратно

2

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *