Изобретение и первые генераторы переменного тока

Ток переменный и ток постоянный

Сначала открыли электрический ток, когда увидели, что он, себя проявляя, действует. Потом только обнаружили, что ток бывает постоянный, но может быть и переменным.

Собственно говоря, генерация тока всегда и происходит от изменения магнитного поля, проходящего через обмотку. И напряжение, которое при этом возникает, просто обязано быть переменным. Потому что технически просто немыслимо заставить магнитное поле изменяться строго равномерно. Источники тока, полученные другим путем, основывались на стационарных процессах (или квазистационарных — учитывая разряд аккумуляторов), поэтому они и давали исключительно постоянный ток. Когда изобрели телеграф — наверное, первое электрическое изобретение, толкнувшее к созданию масштабных электрических линий, — этот самый ток в них был постоянным, хотя и прерывистым. Постоянный ток не очень высокого напряжения дает в передаче на дальние расстояния огромные потери от сопротивления в проводниках. С этим столкнулся уже Самюэль Морзе, когда протягивал свою первую телеграфную линию в 1844 году от Балтимора до Вашингтона. Они с другом сумели с этим справиться, используя «активное усиление» сигнала с помощью реле.


Усиление сигнала с помощью реле

Трамвайные линии, как известно, поначалу унаследовали эту традицию — питаться постоянным электрическим током, хотя конструкция из магнитов и вращающихся в их поле проводников, будучи использована в качестве генератора, легче и проще производит именно переменный ток.

Назначение генератора — выработка напряжения, постоянного и переменного, отсюда его устройство и принцип работы.

А типы вырабатываемого напряжения и определили строение и принцип действия генераторов.

Поэтому и различаются генераторы типами — генератор постоянного тока и генератор переменного тока.

В генераторах постоянного тока этого постоянства достигают конструкционными ухищрениями: путем создания определенной конфигурации магнитного поля, путем увеличения количества якорных рамок в роторе, в которых наводится разность потенциалов и снятие его с них с помощью многоконтактного коллектора, путем организации особых режимов тока возбуждения на специальных обмотках возбуждения, установленных на магнитах статора, и т.д.

Но, оказалось, проще добиться того же эффекта другим путем: индукционный генератор переменного тока напряжение вырабатывает, а потом оно «выпрямляется» обычной схемой диодного выпрямителя. Что и делает, например, генератор автомобиля.

Правила выбора

 В настоящее время создаются устройства, автоматизирующие некоторые пункты работы — это, например, устройства видеонаблюдения, контроля и управление процессом генерации. Эти средства анализируют качество тока на выходе.

Чтобы правильно подобрать аппарат, необходимо узнать и сложить используемые мощности всех одновременно включаемых устройств. Как и в бензиновом варианте, необходимо брать немного с запасом. Лучше всего подойдут генераторы с мощностью 5 кВт.

Приобретая аппарат, следует знать, что он не должен работать все время на максимальной мощности. Длительное время работы на пределе может заметно истощить моторесурс. Рекомендуемая нагрузка должна составлять 75% от максимума.

Принцип работы

Чтобы в проводнике появился электроток, силовые линии магнитного поля должны быть подвижными относительно этого проводника. С этой целью в генераторе переменного тока подвижный вращающийся магнит, который своим магнитным полем пересекает неподвижные проводники. Он расположен на вале, вращаемом внешним источником механической энергии.

Вал с магнитом называется ротором или индуктором. Конструктивно ротор может быть выполнен как с постоянным магнитом из специального магнитного материала, так и с электромагнитом. Такая электрическая машина называется синхронной, поскольку магнитное поле в ней вращается вместе с ротором.

Для получения наиболее эффективного магнитного поля наибольшее распространение получила конструкция с ротором, изготовленным из специальных сплавов в виде сердечника охваченного витками обмотки, по которой течёт постоянный ток. Обмотка называется как «обмотка возбуждения». Источник тока возбуждения может быть как внешним, так и встроенным в ротор. Внешний источник подключается к двум неподвижным щёткам.

Последние расположены на основании, относительно которого вращается ротор, и образуют скользящие контакты с двумя соответствующими кольцами, расположенными на роторе. Встроенный источник является отдельной обмоткой с выпрямителем переменного тока. Его преимущество состоит в том, что скользящие контакты исключены из такой конструкции. Роторы могут конструктивно отличаться. Они делаются явнополюсными, неявнополюсными, снабжаются демпферными обмотками.

Для того чтобы получить необходимое значение частоты тока и напряжение надо за единицу времени получить определённое число пересечений силовых линий магнитного поля с проводником. С целью наиболее эффективного взаимодействия магнитного поля и проводника он выполнен в виде витков обмотки расположенных на сердечнике из специального сплава. Таких сердечников делается столько, сколько потребуется в соответствии с решаемой технической задачей.

Они располагаются вокруг ротора и называются статором. Каждый сердечник статора состоит из двух частей, между которыми с некоторым зазором расположен ротор. Эти две части образуют так называемую пару полюсов электрогенератора. При вращении противоположные магнитные полюсы ротора перемещаются мимо противоположных частей сердечника статора.

Пары полюсов располагаются на основании относительно которого перемещается ротор. Конструктивно это основание выполнено в виде корпуса генератора переменного тока. Статор, щётки, кольца и ротор скрыты внутри корпуса. Из него выступает вал и клеммы щёток. При вращении вала внешней силой например турбиной статор является источником Э.Д.С. Частота напряжения и тока в статоре зависят от того сколько раз за единицу времени магнитный полюс ротора перемещается мимо сердечников статора.

Индукционная установка

Чтобы провести разогрев токами высокой частоты, нужно использовать индукционное оборудование. Оно состоит из высокочастотного генератора, индуктора. Заготовку устанавливают внутри индуктора или рядом с ним. Он представляет собой катушку, на которой закрепляется медная трубка. Габариты, форма индуктора может изменяться в зависимости от размера обрабатываемой детали.

После включения оборудования индуктор генерируют магнитное поле, которое проходит через изделие. Вихревые токи, образующиеся во время обработки, разогревают поверхностные слои стали. Чтобы увеличить глубину проработки детали, нужно повысить частоту тока.

Бывает несколько типов конструкции индуктора:

  1. Валы, отверстия, колеса закаливаются с помощью многовитковых установок.
  2. Рабочую часть инструментов обрабатывают с помощью петлевых аппаратов.
  3. Если деталь сложной формы, применяется фасонная установка.

Помимо конструкции используемого оборудования, изменяют режимы проведения работ:

  1. Одновременная. Нагреву подвергается выбранная зона заготовки. После разогрева деталь равномерно охлаждается.
  2. Непрерывно-последовательная. Зоны, которые требуется подвергнуть обработке, нагреваются последовательно. Для этого заготовка или индуктор смещается. Когда одна зона была разогрета и рабочий сместил индуктор, она начинает охлаждаться.

При обработке нужно удерживать одно расстояние между индуктором, рабочей поверхностью на всем рабочем промежутке

Важно не допускать соприкосновения оборудования и заготовки. Это приведёт к нарушению структуры материала

Одновременный разогрев изделий подразумевает использование большой мощности. Это повышает затраты электроэнергии. Из-за этого при обработки крупногабаритных заготовок применяют режим непрерывно-последовательной закалки.

ТВЧ — технология, направленная на изменение характеристик металлической заготовки. Разогревание изделия высокочастотными токами увеличивает показатели твердости, прочности

Важно равномерно провести разогрев, охлаждение. ТВЧ актуально использовать при многосерийном производстве

Индукционный нагрев ТВЧ. Закалка шестерни


Watch this video on YouTube

Область применения

 Повседневную жизнь человеческого общества невозможно представить без переменного тока. Его широкое использование связано с тем, что он обладает огромными преимуществами перед постоянным.

При этом, главным преимуществом является то, что напряжение и силу переменного тока можно легко и практически без потерь преобразовать в достаточно широких пределах.

Особенно, такое преобразование необходимо в случае передачи электроэнергии на большие расстояния. Электроэнергия обладает большими преимуществами перед другими видами энергии.

Ее можно передавать на большие расстояния с малыми потерями и достаточно легко распределять между потребителями. Кроме того, электроэнергия просто превращается в другие виды энергии (световая, тепловая, механическая и пр.).

Именно поэтому, генераторы переменного тока в современных условиях получили очень широкое применение. С их помощью вырабатывается электроэнергия, которая затем используется во всех отраслях промышленности, а также в быту и на всех видах транспорта.

Рекомендации по замене

Практика эксплуатации показывает, что поменять автомобильный генератор несложно, но для решения задачи требуется соблюдать ряд правил:

  • Новое устройство должно иметь аналогичные токоскоростные параметры, как и у заводского узла.
  • Энергетические показатели должны быть идентичными.
  • Передаточные числа у старого и нового источника питания должны совпадать.
  • Устанавливаемый узел должен подходить по размерам и с легкостью крепится к мотору.
  • Схемы нового и старого автомобильного генератора должны быть одинаковыми.

Учтите, что устройства, смонтированные на автомобилях зарубежного производства, фиксируются не так, как отечественного, к примеру, как на генератор TOYOTA COROLLA   и Лада Гранта   .Следовательно, если менять иностранный агрегат изделием отечественного производства, придется установить новое крепление.

Что же из себя представляет электрогенератор

   Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение) в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря». Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируется, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции. Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Обзор продукции

Производители выпускают мини гидростанции бытового использования для генерирования тока постоянной и переменной частоты в трехфазном и однофазном исполнении. Для выработки электричества необходим небольшой напор воды — до 12 л/сек. Как правило, данные гидроустановки применяются в местах с протеканием небольших рек или в местности с природным/искусственным водопадом, а также с построенной плотиной.

Мини генератор Ct-02 (Китай)

  • Мощность — 5 кВт;
  • Вырабатываемый ток — 50 Гц;
  • Скорость вращения — 30-3000 об/мин;
  • Ток — переменный.

Продукцию можно приобрести под заказ, обозначив необходимые параметры. Начальная цена — 30 000 рублей.

Мини генератор для дома xj13 (Китай)

  • Мощность — 8,5 кВт;
  • Вырабатываемый ток — 50 Гц;
  • Скорость вращения — 145-1920 об/мин;
  • Ток — переменный.

Данная модель горизонтальной установки имеет свои преимущества, малый вес и небольшие объемы. Аппарат можно легко установить в приусадебном участке. Цена — от 16 000 рублей.

 Гидрогенератор LPWG

Гидрогенератор LPWG

  • Мощность — 5 кВт;
  • Вырабатываемый ток — 50 Гц;
  • Скорость вращения — 500 об/мин;
  • Ток — переменный.

Данная гидросистема с горизонтальной подачей воды обеспечит током приусадебное хозяйство либо загородный дом. Покупка водяного генератора электрического тока обойдется в 49 596 рублей.

Как сделать гидроэлектростанцию самостоятельно

Создание водяного электрогенератора своими руками — процесс увлекательный. Можно сконструировать на основе обычного велосипедного генератора. Во-первых, следует определить скорость течения водного потока с помощью секундомера. Если скорость будет недостаточная, придется создать перепад высот, например, установив сливную трубу.

Смотрим видео, делаем поэтапно своими руками:

Вам нужно вырезать из алюминиевого листа несколько лопастей шириной 2-4 см. Длина лопастей должна совпадать с диаметром велосипедного колеса (от обода до втулки). Затем лопасти устанавливаются между спицами и фиксируются при помощи плоскогубцев. Колесо погружается в воду на треть. Очень неплохой вариант выработки электроэнергии в походе для освещения палатки и зарядки телефонов.

Выбираем электрогенератор

Мощность

  • Для постоянного обеспечения энергией частного загородного дома вполне хватит мощности 20-30 кВт.
  • Чтобы точно определить требуемую мощность, нужно сложить показатели потребляемой мощности всех бытовых приборов и добавить лампы освещения.
  • Следует учитывать, что к общей сумме мощности нужно добавить еще процентов 20 сверху с учетом пусковых токов.
  • Если вы работаете с электроприборами строительного назначения, величина требуемой мощности должна быть в три раза больше (до 100 кВт).

 Цены и производители

Рынок товаров обеспечивается разными поставщиками и компаниями-производителями. Ценовой фактор формируется в зависимости от раскрученности бренда. В последнее время хорошо себя зарекомендовали китайские производители. Благоприятное сочетание качества и цены заслуживает внимания.

Гарантия

Гарантийное обслуживание имеет значение. Выбирайте приборы с установленным сроком обслуживания.

Итог

В условиях тотального повышения цен на энергоносители и импортное оборудование стоит задуматься о самостоятельном изготовлении мини-ГЭС для обеспечения хозяйства бесперебойным источником питания. Соорудить собственную гидроэлектростанцию из подручных средств — вполне достижимо. При этом следует учесть необходимый напор водного потока либо увеличить его за счет падения, применить элементарные знания из уроков физики и деловую смекалку.

Генератор на магнитах

Магнитный генератор имеет несколько отличий. Например, он не нуждается в установке конденсаторных батарей. Магнитное поле, которое будет создавать электричество в обмотке статора, создается за счет ниодимовых магнитов.

Особенности создания генератора:

  1. Необходимо открутить обе крышки двигателя.
  2. Понадобится устранить ротор.
  3. Ротор необходимо проточить, сняв верхний слой нужной толщины
    (толщина магнита + 2мм). Самостоятельно выполнить данную процедуру без токарного оборудования крайне сложно, поэтому следует обратиться в токарный сервис.
  4. Сделайте шаблон для круглых магнитиков на листе бумаги
    , исходя из параметров диаметр 10-20 мм, толщина около 10 мм, а присягающая сила порядка 5-9 кг на см 2 . Подбирать размер следует в зависимости от габаритов ротора. Затем прикрепите созданный шаблон на ротор и разместите магнитики полюсами и под углом 15-20 0 к оси ротора. Ориентировочное количество магнитов в одной полоске около 8 штук.
  5. У вас должно выйти 4 группы полос, каждая по 5 полосок.
    Между группами должно сохраняться расстояние величиной в 2 диаметра магнита, а между полосками в группе – 0,5-1 диаметр магнита. Благодаря данному расположению ротор не будет залипать к статору.
  6. Установив все магниты, следует залить ротор специальной эпоксидной смолой.
    Как только она высохнет, покройте цилиндрический элемент стекловолокном и снова пропитайте смолой. Такое крепление позволит избежать вылету магнитов в момент движения. Следите, чтобы диаметр у ротора был таким же, как до проточки, чтобы при установке он не терся об статорную обмотку.
  7. Просушив ротор, его можно установить
    на место и прикрутить обе крышки двигателя.
  8. Провести испытания.
    Для запуска генератора понадобится поворачивать ротор с помощью электродрели, а на выходе вымерять полученный ток тахометром.

Возбуждение генератора

Реальный генератор отличается от тут нарисованного еще и тем, что в качестве источника магнитного поля использовать постоянные магниты — занятие бесполезное. Магнитное поле в промышленной установке должно быть строго определенной и строго выдерживаемой напряженности. А как добиться строго одинаковой напряженности магнитов на разных фазах в трехфазном генераторе переменного тока? Иначе и напряжения на них будут разные, и будут фазы «вечно хромающими». Поэтому на роторе вместо магнитов используют электромагниты с сердечниками. К ним подводится постоянное напряжение, и они во время работы генератора возбуждают электромагнитное поле строго заданной интенсивности. Постоянное напряжение подается от независимого источника — это может быть аккумулятор или другой источник постоянного тока. Тут опять проблема: или взгромоздить на ротор еще и аккумулятор для питания катушек возбуждения, или снова заморачиваться с коллекторами для передачи напряжения возбуждения. Решение можно назвать соломоновым: сделать на одном роторе как бы сразу два генератора, только второй питает током обмотки возбуждения первого. А в статоре, соответственно, добавляются еще электромагниты для возбуждения магнитного поля в этом втором генераторе, ток от которого используется только в самом роторе, следовательно, снаружи никому и не нужен. И не надо городить никаких коллекторов для его съема. Такая конструкция стала называться «бесщеточный синхронный генератор переменного тока».

Синхронным он называется потому, что оба источника — и генератор тока возбуждения, и генератор-устройство, дающее конечный результат — напряжение на выходе, работают одновременно на одном и том же роторе.

С помощью тока возбуждения можно влиять на напряжение, которое дает генератор-устройство: при увеличении тока возбуждения соответственно усиливается и магнитное поле, возбуждаемое ротором, отчего главные обмотки генератора и будут вырабатывать переменное напряжение более высокой амплитуды.

Этим пользуются для регулировки напряжения, так как скорость вращения ротора менять нельзя, иначе изменится и частота, а она задана жестко техническими характеристиками всей нашей сети электроэнергии.

Наша энергосистема вырабатывает напряжение частотой строго 50 Гц, ее и производят генераторы электростанций — все они вращают свои роторы со скоростью, кратной 50 Гц. А конструкция ротора выводит напряжение, изменяющееся 50 раз в секунду.

Однако во многих случаях, где высокая точность частоты вырабатываемой энергии не критична, используют асинхронные генераторы. Они проще и дешевле синхронных, но дают напряжение с большим разбросом параметров

Это неважно там, где оно последующими схемами все равно будет преобразовано в постоянное

Правила эксплуатации генератора по Остеру

И напоследок несколько “вредных” советов, как быстро и без проблем “сжечь” генератор:

  1. Самый лучший и быстрый способ – “Переплюсовка”. Поменяйте местами провода от клемм аккумуляторной батареи, при этом возможен не только оптический эффект (яркая вспышка внутри генератора, легкое дымовое облако), но также звуковой (от щелчка до хлопка и шипения), обонятельный (почувствуете непередаваемый аромат горящих проводов!), и, наконец, тактильный (ожог 1-3 степени – подбирается экспериментально!) После применения этого способа диодный мост выгорает с вероятностью 99%, статор – 60%, реле-регулятор – 20%, провода – 10%, автомобиль целиком – 0,01%! Способ очень эффективен при “прикуривании”. Возможны побочные эффекты – выгорание бортовых компьютеров, сигнализации, музыки и т.д. Большой плюс – не требует специальных навыков и знаний, легко осваивается начинающими.
  2. Способ “Мойка”. Помойте двигатель своей машины. Особенно тщательно помойте генератор, проследите, чтобы потоки воды прополоскали все внутренности агрегата. Ни в коем случае не продувайте генератор после мойки! Сразу же заводите машину и включите побольше нагрузок – весь свет, обогрев, музыку. Если эффект не произошел – повторите попытку. Эффект появится, поверьте!!! Плюс – сгоревший генератор будет чистым.
  3. “Дедовский” метод – сдёргивание плюсовой клеммы аккумулятора на работающем двигателе вроде бы для проверки зарядной системы. Процент сгоревших релюшек увеличивается до 50-70%. Способ требует определенной сноровки – главное, чтобы было побольше искр! Возникающие в цепях высоковольтные коммутационные процессы рано или поздно должны будут сжечь хоть что-нибудь в Вашем генераторе, или, в крайнем случае, в машине! Как всегда, рекомендуется включить побольше всяких там нагрузок – свет, печки, подогрев. Способ не очень эффективен на старых машинах, но главное – верить, что так и будет!
  4. “Лужа” – способ, которым пользуется множество автолюбителей, даже не подозревая об этом. При этом многие искренне уверены, что автомобиль и его агрегаты, включая генератор, по водонепроницаемости должен быть сродни подводной лодке. Дерзайте! Как много неисследованных глубин ждут своих первооткрывателей! И еще простой совет – лужу надо проезжать на возможно максимальной скорости, тщательно следя, чтобы брызги равномерно захлестывали подкапотное пространство. Отсутствие защитных кожухов и поддонов во многом облегчит Вашу непростую задачу. Очень большой плюс – способом можно пользоваться практически ежедневно, не выходя из машины!
  5. Способ “Меломан”. Для очень крутых! Поставьте в Вашу машинку супер магнитолку, парочку CD чейнджеров, пару-тройку ламповых усилителей ватт по 200-300, сабвуфер ватт на 500, ну колонок с десяток, лучше полтора. Вообще, чем больше – тем лучше! Баксов на 12-25 тысяч! (Это не враки – случай зафиксирован!) Включайте! Если через пару минут генератор все ещё работает, а характерного дыма и запаха все еще нет – значит Вы поставили слишком дешёвую аппаратуру!
  6. “Аккумуляторный” способ – наиболее коварный и таинственный из всех, поскольку его осознание требует понимания химических и физических процессов (ну хотя бы закон Ома, что уже не всем дано!) А если по-простому – используйте давно просроченный аккумулятор, не моложе трех-пяти лет. Чем старше – тем больше вероятность, что в аккумуляторе окажется короткозамкнутая банка. При этом аккумулятор может подавать признаки жизни – заводить машину, подзаряжаться от зарядного устройства и т.д., но при этом он становится мощной паразитной нагрузкой в цепи генератора. Возможно, что силы тока будет хватать на работу инжектора, но при включении дальнего света и обогрева генератор будет греться так, что его можно использовать для приготовления яичницы в походных условиях! Главное – не обращать на это внимания, и способ когда-нибудь сработает!

Как самостоятельно подключить генератор в ВАЗ 2107

Каждый автовладелец «семерки» должен знать, что представляет собой схема подключения генераторной установки.

Несмотря на то, что этот агрегат довольно надежный и имеет высокий срок службы, рано или поздно он все равно выйдет из строя, причины могут быть следующими:

  • перегоревшие обмотки внутри агрегата;
  • межвитковое замыкание, образовавшееся в системе;
  • повреждения и прочие дефекты корпуса устройства и т.д.

Если вы не планируете заниматься ремонтом генератора или ремонтные работы не принесли успеха, то нужно будет подменять устройство.

Для этого нужно сделать следующее:

  1. Сначала нужно обесточить бортовую сеть автомобиля. Чтобы сделать это, отключите зажигание, а затем откройте капот и сбросьте минусовую клемму с аккумуляторной батареи.
  2. Затем вам надо будет найти сам генератор — как мы сообщили выше, он расположен с правой стороны от силового агрегата. К генератору подводится провода и силовой кабель со штекером — его необходимо отсоединить. Желательно при этом запомнить расположение проводов.
  3. Далее, необходимо произвести демонтаж брызговика справа, а также защиту мотора, если она имеется.
  4. Теперь начинается самое сложное. При помощи гаечного ключа вам надо будет выкрутить гайку винта, который фиксирует установку к корпусу силового агрегата. Если возникнут сложности с откручиванием гайки, то обработайте ее средством WD-40, после чего сам винт надо будет извлечь из посадочного места. Попробуйте ударить по нему молотком с другой стороны, только не сильно, это позволит выбить болт. Если извлечь винт вы не смогли, то придется демонтировать агрегат с кронштейном, на котором он фиксируется.
  5. Для демонтажа кронштейна вам надо будет выкрутить два винта, в некоторых модификациях ВАЗ 2107 используются трехвинтовые крепления. В любом случае, при выполнении этих действий нужно руководствоваться конструктивными особенностями транспортного средства. Иногда для снятия агрегата нужно снимать также радиаторное устройство или сместить его немного в сторону, чтобы получить доступ к кронштейну. При этом подключенные к радиатору патрубки отсоединять не нужно.
  6. После того, как агрегат будет демонтирован из места установки, вам надо будет убрать .
  7. Так узел снимается. Для его демонтажа необходимо выполнить все эти действия, только в обратном порядке. Прежде чем произвести монтаж устройства надо ознакомиться со схемой подключения установки и электросхемой соединений, все это должно быть указано в сервисной книжке к авто.
  8. Когда узел будет установлен, необходимо произвести регулировку натяжения ремешка. Для выполнения этих действий надо будет ослабить два винта, которые крепят узел. При помощи монтировки надо натянуть ремешок и закрепить его в соответствующем положении гайкой, которая расположена на регулировочной пластине. При регулировке нужно обязательно проверить степень натяжки ремня, чтобы выполнить это, нажмите на ремешок в свободном месте между шкивами. Ремень прогнется, при этом величина прогиба должна составить не менее 1 см и не более 1.7 см, в противном случае генератор будет работать некорректно, а ремень может износиться раньше. Когда процедура регулировки будет завершена, нужно затянуть все гайки.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *