Механизмы трансформации диванов
1.2.
Изучение приёмов преобразования уравнений начнём с обсуждения того, как можно разлагать на множители выражения, входящие в данное уравнение. Вообще представление уравнения f (x) = g (x) в виде
где выражения Fk (x), k = 1, …, n «проще» функций f (x) и g (x), представляет собой несомненное продвижение в решении уравнения. В самом деле, представление вида (5) позволяет сразу приравнивать множители Fk (x) нулю и решать более простые уравнения. Представление уравнения (1) в виде (5) иногда называют факторизованным видом уравнения (1) (от английского слова «factor» – множитель).
Перечислим теперь некоторые наиболее распространённые приёмы разложения многочленов, как наиболее простых алгебраических функций, на множители.
1. Вынесение общего множителя за скобку
В том случае, когда все члены многочлена имеют один и тот же общий множитель, его можно вынести за скобку, получая тем самым разложение многочлена.
Пример 1
Разложить на множители многочлен x5 – 2×3 + x2.
Показать решение
2. Применение формул сокращённого умножения
Формулы сокращения довольно эффективно применяются при разложении многочлена на множители. Полезно помнить следующие формулы:
Пример 2
Разложить на множители многочлен (x – 2)4 – (3x + 1)4.
Показать решение
3. Применение выделения полного квадрата
Без преувеличения можно сказать, что метод выделения полного квадрата является одним из наиболее эффективных методов разложения на множители. Суть его состоит в выделении полного квадрата и последующего применения формулы разности квадратов. Поясним сказанное на примере.
Пример 3
Разложить на множители многочлен x4 + 4×2 – 1.
Показать решение
4. Группировка
Метод группировки слагаемых, как правило, применяется совместно с другими методами разложения на множители и чаще всего с методом вынесения за скобки. Суть метода состоит в том, что все слагаемые данного многочлена перегруппировываются таким образом, чтобы в каждой группе, возможно после вынесения общего множителя за скобки, образовалось бы одно и то же выражение. Это выражение можно также вынести за скобки как общий для всех групп множитель.
5. Метод неопределённых коэффициентов
Суть метода неопределённых коэффициентов состоит в том, что вид сомножителей, на которые разлагается данный многочлен, угадывается, а коэффициенты этих сомножителей (также многочленов) определятся путём перемножения сомножителей и приравнивания коэффициентов при одинаковых степенях переменной.
Теоретической основой метода являются следующие утверждения.
- Два многочлена равны тогда и только тогда, когда равны их коэффициенты.
- Любой многочлен третьей степени имеет хотя бы один действительный корень, а потому разлагается в произведение линейного и квадратичного сомножителя.
- Любой многочлен четвёртой степени разлагается в произведение многочленов второй степени.
Для доказательства второго утверждения вспомним, как выглядит график степенной функции с нечетной целой степенью (§ 2.2.5). Действительно, из его вида следует, что значение многочлена имеет разные знаки при x → +∞ и x → –∞. Многочлен степени n – непрерывная функция, значит, найдется хотя бы одна точка, в которой график этой функции пересечет ось Ox.
Пример 4
Разложить на множители многочлен 3×3 – x2 – 3x + 1.
Показать решение
6. Теорема о корнях многочлена
Разложение многочлена на множители иногда удаётся провести, если один из его корней угадан с помощью теоремы о рациональных корнях, доказанной в § 2.1.4. После того, как корень x = α угадан, многочлен Pn (x) представим в виде Pn (x) = (x – α) · Pn – 1 (x), где Pn – 1 (x) − многочлен степени на 1 меньше, чем Pn (x).
Пример 5
Разложить на множители многочлен x3 – 5×2 – 2x + 16.
Показать решение
7. Разложение относительно параметра
Суть этого метода легче всего понять на примере.
Пример 6
Разложить на множители многочлен x4 – 10×2 – x + 20.
Показать решение