Что называют электрическим током Электрический ток

Постоянный электрический ток.Действие электрического тока

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Скорость электронов в проводнике

Рассмотрим случай протекания постоянного тока в цилиндрическом проводнике и выведем формулу, определяющую скорость упорядоченного движения электронов в металлах.

Рис. 11. Схема протекания тока в проводнике

Запишем определение силы тока:

За время  поперечное сечение  успели пересечь все те электроны, находящиеся в пространстве проводника, ограниченном длиной  (расстояние, которое прошли электроны за время ). Поэтому  можно посчитать как:

Здесь:  – заряд одной частицы;  – концентрация электронов в проводнике.

Подставим это равенство в определение силы тока, и с учетом того, что  – модуль значения заряда электрона:

 – средняя скорость упорядоченного движения зарядов.

Получаем формулу:

То есть сила тока и скорость направленного движения электронов – прямо пропорциональные величины.

Для определения концентрации электронов необходимо применить формулы из курса молекулярной физики. Если сделать предположение, что на каждый атом вещества проводника приходится один электрон, то тогда справедливо:

Зная, что , получаем:

Подставим  и , где  – молярная масса (масса одного моль вещества); – число Авогадро (количество молекул в одном моле вещества). Получим:

То есть при нашем допущении концентрация свободных электронов зависит только от материала проводника (плотности и молярной массы).

Для оценки порядка искомой скорости направленного движения электронов рассмотрим ток в 1 А, текущий по медному проводнику сечением 1 . Согласно формулам:

Замечание:  и  являются табличными величинами.

То есть, как можно убедиться, скорость направленного движения электронов чрезвычайно мала. Быстрота же срабатывания всех электрических приборов, в частности ламп, обусловлена тем, что двигаться начинают все электроны по всему объему проводника практически одновременно (рис. 12).

Рис. 12. Все электроны по всему объему проводника начинают двигаться практически одновременно

На следующем уроке мы рассмотрим условия, наличие которых обязательно для существования тока.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. – М.: 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «Physics.ru» (Источник).
  2. Интернет-портал «Mugo.narod.ru» (Источник).
  3. Интернет-портал «Электрический ток. Сила и плотность тока» (Источник).

Домашнее задание

  1. Стр. 101: № 775. Физика. Задачник. 10-11 классы.Рымкевич А.П. – М.: Дрофа, 2013. ()
  2. Движутся ли заряженные частицы в проводнике, по которому не течет ток?
  3. Какие действия тока можно наблюдать, пропуская ток через морскую воду?
  4. При какой силе тока за 4 с сквозь поперечное сечение проводника проходит 32 Кл?
  5. *Возможен ли электрический ток в отсутствии электрического поля?

Нейтрализация противника электрошоком

Наиболее известной способностью электрической рыбы является способность атаковать противника с помощью электрических разрядов. Электрический угорь, электрический скат и электрический сом имеют электрические органы, которые могут генерировать разряды, способные парализовать или даже убить другие виды. Положительный полюс располагается в области головы, отрицательный – в области хвоста (Gerrow 2002).

Электрический угорь (Electrophorus electricus). Данный вид способен производить разряды напряжением около 600 В, хотя имеются и другие данные (Бэйли и соавт.) По сути, у электрического угря имеется не один, а целых три электрических органа. Один из них – орган Сэча – производит слабые импульсы, которые используются для обнаружения жертвы и ориентирования в пространстве. Основной электрический орган, а также «орган охотника», производят и накапливают электричество, создавая потенциал для сильных разрядов. Угорь атакует жертву, выпуская импульс в пространство, либо простым прикосновением, что является более эффективным способом. После выпуска разряда, угрю требуется почти час для того, чтобы «перезарядиться» и вновь достигнуть максимального заряда (Gerrow 2002)

Электрический угорь и три отдела электрического органа: орган Сэча, «орган охотника» и основной орган. Их расположение можно посмотреть на иллюстрации выше.

Электрический сом (Malapterurus electricus). Электрический сом атакует также как и электрический угорь – выпуская разряд в воду или, чаще всего, путем непосредственного прикосновения. В то же время, его разряды не такие мощные, как у угря (около 350 В), однако и такой мощности достаточно для нейтрализации и пленения других рыб. В первую очередь, сом генерирует основной разряд, за которым могут последовать несколько слабых разрядов (Gerrow 2002)

Электрический скат (Torpedo torpedo). Электрический скат является одним из наиболее известных видов скатов, однако это лишь один из 35 видов электрических скатов. Скаты используют необычный способ пленения жертвы благодаря своему потенциалу и уникальному строению тела. С помощью больших крыловидных плавников скат полностью поглощает добычу. Пленив таким образом жертву, скат генерирует мощный разряд (до 200 В) и убивает ее (Gerrow 2002)

Переменный ток

Прежде не акцентировали внимание, но в быту гораздо удобнее использовать переменный ток. Его проще передавать по цепям, благодаря возможности использования трансформаторов, осуществляющих развязку отдельных сегментов и преобразование параметров

Частоты промышленной сети обычно укладываются в диапазон 50 — 60 Гц, и большинство людей интересуется причинами показателей. К примеру, Никола Тесла показал, что ток частотой свыше 700 Гц практически не наносит вреда человеческому телу, продвигаясь по поверхности (кожа).

Указанный эффект широко известен в электротехнике. Называется – поверхностным (на английском skin – кожный). Явление сводится к факту, что ток с повышением частоты проникает все меньше в толщу материалов. Для медных проводников на частоте 60 Гц глубина достигает 8,57 мм. По названной причине жилы на большие токи делают часто полыми. Ввиду большого диаметра ток все равно никогда не проникнет в сердцевину. Полые проводники позволяют экономить на материалах и снижать массу проводов.

Цикл переменного тока

Здесь и кроется причина, почему промышленность пока не перешла на новый уровень. Ведь использование тока частотой 700 Гц ощутимо обезопасит сети для рядовых граждан. Подобный шаг потребует коренным образом пересмотреть конструкцию многофазных двигателей, значительно повысить их КПД (для снижения объёма передаваемой мощности). Что часто невозможно на нынешнем этапе развития техники.

Переменный ток образуется обычно в проводнике за счёт смены направления внешнего магнитного поля. Так происходит на электростанции. Массивный вал турбины совершает от силы пару оборотов в секунду, а высокая частота образуется за счёт коммутации обмотки статора. Так изменение промышленных стандартов выполняется относительно просто. Ходят слухи, что с повышением частоты растут потери в ферромагнитных материалах на вихревые токи. Причём зависимость квадратичная. В это охотно верится, мощность индукционных плит часто повышается путём роста частоты импульсов в питающем инверторе.

В литературе говорится, что Никола Тесла предложил напряжение переменного тока 220 В частотой 60 Гц, как оптимальное для работы собственных двухфазных двигателей (изобрёл асинхронные машины, доказал, что на частоте 60 Гц достигается максимальный экономический эффект от применения собственных наработок). Из-за ряда неувязок в согласовании и лоббирования частных интересов параметры иные в США и Европе.

Определение допустимо отнести к флюидам. Переменный ток образуется то за счёт одного заряда, то за счёт другого. На практике это принято представлять как поток электронов, дважды за период меняющий направление. Частота процесса измеряется в Гц, график (плотности потока частиц) близок к синусоиде. В промышленных сетях присутствует три фазы (родоначальник – М. О. Доливо-Добровольский, первым обнаружил ошибки в теоретических ограничениях КПД двигателей многофазного тока). Представим как независимые синусоиды, сдвинутые равномерно друг относительно друга на 120 градусов. Пока один график переходит через нуль, второй уже переходит треть периода, а оставшийся – две трети.

Три фазы в промышленных агрегатах позволяют создать вращающееся магнитное поле (детище Николы Тесла), двигающее роторы электрических моторов. В этом случае значительно удаётся сэкономить на меди нулевого провода (нейтрали), большая часть тока уходит из установки по фазным проводам, где в это время цикла потенциал ниже. Схемотехника сетей 380 В значительно отличается от 220.

Полный электрический ток

Полный электрический ток принято разделять на следующие основные виды: ток проводимости, ток переноса и ток смещения.

Полный электрический ток, проходящий сквозь замкнутый контур, равен интегралу напряжения магнитного поля по контуру, причем положительное направление прохождения сквозь контур и положительное направление обхода контура-связаны правилом правой руки.

Полный электрический ток принято разделять на следующие основные виды: ток проводимости, ток переноса и ток смещения.

Полный электрический ток содержит четыре составляющие. Поэтому эквивалентным многополюсником служит восьмиполюсник, который, однако, распадается на параллельно соединенные емкость двойного слоя Ся д и шестиполюсник.

Полный электрический ток принято разделять на следующие основные виды: ток проводимости, ток переноса и ток смещения.

Полный электрический ток j определяется как изменение полного электрического смещения, отнесенное к единице времени. Он включает обычный электрический ток вместе с током смещения Максвелла.

Полный электрический ток дрейфа определяется суммой электронной и дырочной компонент, причем оба члена этой суммы имеют одинаковые знаки, так как выражения (4.114) и (4.115) различаются не только знаком заряда электронов и дырок, но и знаком их подвижности.

Полный электрический ток электрохимической реакции, включающей две адсорбционные стадии, как видно из уравнения (10.24), содержит три составляющих — емкостный ток и два адсорбционных тока.

Полным электрическим током называется совокупность всех явлений, при которых образуется магнитное поле.

Полным электрическим током называется совокупность всех явленищ при которых образуется магнитное поле.

Полным электрическим током называется совокупность всех явлений, при которых образуется магнитное поле.

Очевидно, что полный электрический ток представляет собой два разнородных явления: движение электрических зарядов и изменение электрического поля во времени. Поэтому полный электрический ток представляет собой совокупность явлений, при которых образуется магнитное поле, причем токи смещения преобладают в диэлектриках, токи проводимости — в проводниках, а в полупроводниках нужно учитывать все составляющие полного тока.

Интенсивность часто характеризуют полным электрическим током, создаваемым пучком. Для получения тока, очевидно, надо умножить число частиц, вылетающих за одну секунду, на заряд отдельной частицы.

Этот важный принцип гласит: полный электрический ток сквозь взятую в какой угодно среде замкнутую поверхность равен нулю. При этом выходящий из поверхности ток считается положительным, входящий — отрицательным.

Постоянное магнитное поле настолько велико, что полный электрический ток, обусловленный электрическим полем, направлен параллельно магнитному полю. Составляющая электрического поля в направлении, перпендикулярном к магнитному полю, приводит к поперечному дрейфу плазмы без ускорения. Если электрическое поле параллельно магнитному, массовая скорость плазмы равна нулю и магнитное поле вообще можно не учитывать.

Применение

При изучении электрического тока было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии

  • получения механической энергии во всевозможных электродвигателях,
  • получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,
  • получения световой энергии в осветительных и сигнальных приборах,
  • возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,
  • получения звука,
  • получения различных веществ путём электролиза, зарядка электрических аккумуляторов. Здесь электромагнитная энергия превращается в химическую,
  • создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине

  • диагностика — биотоки здоровых и больных органов различны, при этом бывает возможно определить болезнь, её причины и назначить лечение. Раздел физиологии, изучающий электрические явления в организме называется электрофизиология.
    • Электроэнцефалография — метод исследования функционального состояния головного мозга.
    • Электрокардиография — методика регистрации и исследования электрических полей при работе сердца.
    • Электрогастрография — метод исследования моторной деятельности желудка.
    • Электромиография — метод исследования биоэлектрических потенциалов, возникающих в скелетных мышцах.
  • Лечение и реанимация: электростимуляции определённых областей головного мозга; лечение болезни Паркинсона и эпилепсии, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Физика для средней школы

Электрический ток. Сила и плотность тока

Электрическим током называется направленное (упорядоченное) движение заряженных частиц.

Электрический ток в проводниках различного рода представляет собой либо направленное движение электронов в металлах (проводники первого рода), имеющих отрицательный заряд, либо направленное движение более крупных частиц вещества — ионов, имеющих как положительный, так и отрицательный заряд — в электролитах (проводники второго рода), либо направленное движение электронов и ионов обоих знаков в ионизированных газах (проводники третьего рода).

За направление электрического тока условно принято направление движения положительно заряженных частиц.

Для существования электрического тока в веществе необходимо:

  1. наличие заряженных частиц, способных свободно перемещаться по проводнику под действием сил электрического поля;
  2. наличие источника тока, создающего и поддерживающего в проводнике в течение длительного времени электрическое поле.

Количественными характеристиками электрического тока являются сила тока I и плотность тока j.

Сила тока — скалярная физическая величина, определяемая отношением заряда q, проходящего через поперечное сечение проводника за некоторый промежуток времени t, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока — основная единица в СИ 1 А — есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Н на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной l (рис. 1). Заряд каждой частицы q. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSl частиц, где n — концентрация частиц. Их общий заряд

Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени

все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Плотность тока j — это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1),

направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Пассивная электролокация

Электрическая рыба обладает способностью генерировать и принимать электрические сигналы в целях охоты. Все морские организмы испускают слабые электрические разряды, которые хорошо проводятся в окружающей водной среде. Электрическая рыба улавливает эти сигналы, исходящие от потенциальной жертвы. Рыба способна с точностью определять место, где находится жертва, отслеживать ее движения и даже выбирать наиболее эффективную манеру атаки (von der Emde 1999). Такая электролокационная охота имеет ряд преимуществ. Во-первых, она позволяет электрической рыбе выживать за счет видов, охота на которые без электролокации была бы невозможна, поскольку только электрические сигналы позволяют определять местонахождение скрывающейся жертвы. Также, эта способность дополняет остальные сенсорные функции и создает более полное представление об окружающей обстановке и доступности еды.

Хотя акулы и скаты являются наиболее известными «электролокационными» хищниками, этой способностью обладают также некоторые другие виды. Ниже приведены несколько примеров.

Веслонос (Polyodon spathula) – вид пресноводных рыб, питающийся зоопланктоном. Взрослые особи способны отфильтровывать еду, однако у молодых особей отсутствуют так называемые жаберные тычинки, поэтому они находят планктонных животных и нападают на них избирательно. Веслоносы живут в мутной воде, у них слабо развиты органы зрения. Поэтому, во время охоты на зоопланктон, они полагаются на электрические органы. (Wilkens et al.1997).

Американская кунья акула. Охота посредством электролокации в большой степени свойственна американской куньей акуле (Mustelus canis). Эта рыба питается более мелкими видами рыб, которые способны быстро передвигаться и обычно прячутся от хищников в донном песке. Способность к электролокации позволяет очень точно определить место, где прячется жертва, даже если она скрывается под слоем песка. Акула наносит удар с предельной точностью, однако, в случае неудачи при атаке, жертва быстро покидает место, и поймать ее уже не представляется возможным (Kalmijn 1982)

Синяя акула Доказано, что некоторые виды акул и скатов способны к электролокации. В ходе научных опытов с синими акулами (Prionace glauca) выяснилось, что акулы предпочитают атаковать добычу, имитируемую электрическими полями, нежели добычу, имитируемую запахами (Kalmijn 1982)

Примечание: при пассивной электролокации, электрическая рыба лишь обнаруживает электрические поля других организмов. При активной локации, рыба обнаруживает электрические поля, создавая при этом собственное поле. Объекты распознаются путем анализа создаваемых ими помех в электрическом поле.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector