Переменный ток и его получение

Преобразование

Понятно, что в розетках мы получаем переменный ток. Но часто для электрических приборов необходим постоянный вид. Для этой цели служат специальные выпрямители. Процесс состоит из следующих действий:

  • подключение моста с четырьмя диодами, имеющих необходимую мощность;
  • подключение фильтра или конденсатора на выход с моста;
  • подключение стабилизаторов напряжения для уменьшения пульсаций.

Преобразование может происходить как из переменного в постоянный ток, так и наоборот. Но последний случай будет реализовать значительно труднее. Потребуются инверторы, которые, помимо прочего, стоят совсем недешево.

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют

Обращайте внимание на свое тело. Если вы замети

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Электрический ток постоянный и переменный

В самом начале, давайте дадим короткое определение электрическому току. Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Ток – это движение электронов в проводнике, напряжение – это то, что приводит их (электроны) в движение.

Теперь рассмотрим такие понятия, как постоянный и переменный ток и выявим их принципиальные отличия.

Получение — переменный ток

Получение переменного тока на обмотках статора электро -, двигателя иллюстрируется временными диаграммами, представленными на рис. 5.2

Генератор управляющих импульсов собран по схеме симметричного мультивибратора и вырабатывает прямоугольные импульсы неизменной скважности.

Получение переменного тока от ис точника постоянного напряжения, к котором; подключена электронная лампа с сеткой К сетке лампы присоединен источник переменно го напряжения. Через лампу протекает перемен ный ток, величина которого в каждый момент времени определяется напряжением на сетке лампы.

Для получения переменного тока в обмотках трансформатора необходимы периодические изменения тока в одной обмотке или в нескольких поочередно, для чего обычно производят прерывание постоянного тока и распределение его по фазам трансформатора. В качестве прерывающих и распределительных элементов в инверторах используются управляемые вентили.

Схема устройства генератора переменного тока.

Для получения переменного тока используют электромашинные генераторы. Работа генератора переменного тока основана на явлении электромагнитной индукции.

Для получения переменного тока служат электромашинные генераторы, превращающие механическую энергию в электрическую. Принцип работы генератора основан на явлении э л е к-тро магнитной индукции. Генераторы небольших мощностей возбуждаются со стороны статора, а переменный ток снимается с колец ротора ( фиг. Более крупные генераторы возбуждаются со стороны ротора, а переменный ток снимается с неподвижных обмоток статора ( фиг. Генераторы приводятся во вращение первичными двигателями: турбинами, двигателями внутреннего сгорания и другими.

Для получения переменного тока в обмотках трансформатора необходим периодически.

Для получения переменного тока частотой свыше 50 гц в промышленности применяют синхронные генераторы с явнополюоным ротором или индукторные генераторы с безобмоточным ротором и обмоткой возбуждения на статоре.

Схема устройства генератора переменного тока.

Для получения переменного тока используют электромашинные генераторы. Работа генератора переменного тока основана на явлении электромагнитной индукции.

Схема автотрансформатора.

Для получения переменного тока нам нужно было, чтобы виток был сцеплен с переменным магнитным потоком.

Для получения переменного тока в обмотках трансформатора, подключенного к источнику постоянного тока, необходимо обеспечить периодический переход тока из одной обмотки в другую. Это достигается путем прерывания постоянного тока и распределения его по фазам трансформатора с помощью управляемых вентилей.

Для получения переменного тока повышенной частоты служат синхронные высокочастотные генераторы индукторного типа.

Для получения переменного тока требуемой характеристики обычно применяется понижающий трансформатор, являющийся более компактным устройством, чем соответствующий источник постоянного тока.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Генератор. Ротор и статор

Так мы переходим к устройству, которое дает возможность получить электрический ток и называется генератором.

Идея получения электрического тока таким способом впервые пришла Майклу Фарадею. В его рисунках даже сохранился чертеж первого генератора.

Большинство генераторов – это т.н. электромеханические генераторы, в них за счет механического движения подвижной части такого генератора создается переменный электрический ток.

Что же такое переменный электрический ток? Переменным электрическим током называют такой ток, который периодически изменяется по своей величине, модулю и направлению.

На сегодняшний день вся промышленность использует именно переменный электрический ток.

Объясняется это тем, что очень удобно, во-первых, получить переменный электрический ток, а во-вторых, удобно передавать его на большие расстояния. Вот поэтому в мире везде и всюду используется именно переменный ток.

Обозначают его на всех схемах волнистой линией.

Рис. 1. Обозначение переменного тока

Обратите внимание: если дома есть какие-либо электрические приборы и на этих приборах встречается такое обозначение, значит, эти приборы работают на переменном электрическом токе. Как устроены генераторы?

Как устроены генераторы?

Итак, современный генератор представляет собой довольно сложное устройство, но в основном состоит он из двух частей – ротора и статора.

Рис. 2. Устройство генератора

Статор – это неподвижная часть. Ротор – подвижная. Можно сказать, что статор – это аналог катушки с большим числом витков. А ротор – это магнит, который вращается и создает изменяющийся магнитный поток с течением времени, пронизывая те витки, которые находятся в статоре, индуцирует, наводит в этих витках электрический ток.

Если генератор маломощный, то обычно ротор делают из постоянного магнита. Ему придают определённую форму, создают внутри несколько отдельных полюсов. Этот постоянный магнит, вращаясь прямо внутри статора, непосредственно создаёт индукционный электрический ток. Если же необходим мощный генератор, то в этом случае ротор – уже не постоянный магнит, а электромагнит.

Конечно, необходимо сказать, что во всех генераторах ротор вращается за счет работы сторонней силы. Если этот генератор установлен на гидроэлектростанции, то там используется энергия падающей воды. В этом случае ротор вращается с небольшой скоростью. Поэтому приходится делать ротор сложной формы, чтобы создать большое изменение магнитного потока при вращении ротора и получить значительный электрический ток. Например, у генератора на тепловых электростанциях ротор будет вращаться за счет поступающего пара, там частота вращения достаточно большая, и в этом случае количество полюсов и форма ротора будет совсем иная.

Рис. 3. Устройство ротора и статора

Если говорить про статор, то это неподвижная часть генератора. В ней прорезаются пазы. Представьте себе цилиндр, в котором прорезаны пазы, в этих пазах укладывается обмотка статора, где и создается индукционный электрический ток. Так устроены генераторы переменного тока.

Что такое переменный ток и переменное напряжение

Ноябрь 15th, 2010 Айрат

Что такое переменный ток и переменное напряжение?

Ток бывает двух основных видов — постоянный и переменный. Чтобы разобраться с этими терминами, необходимо вспомнить, что ток — это упорядоченное движение электронов. И вот когда эти электроны все время движутся в одном и том же направлении, то такой ток называется постоянным. Но под понятием упорядоченное движение следует также понимать то что в один момент электроны движутся в одном направлении а во второй момент — в обратном и так без остановки. Вот такой ток уже называется переменным. Если говорят о постоянном и переменном напряжении, то имеется в виду что у постоянного напряжения + и — всегда «находятся на одном месте».

Примером постоянного напряжения может послужить обыкновенная батарейка, на её корпусе вы всегда найдете обозначения + и -. А у переменного + и — меняются через некоторой отрезок времени. Следственно постоянное напряжение создает постоянный ток. и соответственно переменное напряжение — переменный ток. Примером переменного напряжения может послужить обыкновенная электросеть. Постоянный ток обозначается одной прямой линией, а переменный одной волнистой линией.

Я думаю, вам не раз приходилось видеть надписи 220В, перед которой стоит горизонтальная волнистая линия. Это и есть обозначение переменного тока.

Обратите внимание на то, что устройства, в который используется постоянный ток, в подавляющем количестве, не допускают чтобы при подключения к ним питания контакты + и — перепутались между собой, поскольку если их перепутать то прибор может попросту «сгореть»

А вот для переменного напряжения это уже не актуально, припустим, вы включаете в розетку… да что угодно, и не важно какой именно стороной вставить вилку в розетку, прибор все ровно будет работать. Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц

Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз

Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц. Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз.

Для того чтобы представить, как именно происходит изменение полярности переменного напряжения необходимо разбираться в графиках, которые показывают напряжение в разные моменты времени. Давайте посмотрим на график, демонстрирующий постоянное напряжение (он слева). Припустим, что этот график показывает напряжение на контактах лампочки фонарика.

Начиная с точки 0 и до точки «а» график показывает, что напряжение равно нулю. Или другими словами говоря его там вообще нет (фонарик выключен). В момент времени «а» (в нашем варианте на контактах лампочки) появляется напряжение равное U1, которое остается без изменений в течении времени от «а» до «б» (фонарик включен). В момент времени «б» Напряжение снова пропадает (стает равным нулю). Если посмотреть на второй график, который отображает переменное напряжение, то думаю, несложно разобраться что именно происходит с переменным напряжением в разные моменты времени. В нулевой точке оно равно нулю. На протяжении времени от «0″ до «а» напряжение плавно возрастает до значения U1 и в этот же момент начинает спадать. В результате чего в момент времени «б» достигает нулевой отметки. Но как видно на графике, напряжение продолжает падать и становится отрицательным. В точке «г» достигает минимума, и снова начинает возрастать. Это явление повторяется на протяжении существования напряжения (пока свет не отключат . Следует заметить, что переменное напряжение может быть не только такой формы. Оно может быть, например, прямоугольной или практически любой другой формы. Теперь еще раз взгляните на этих два графика, и вспомните, как обозначается постоянный и переменный ток (напряжение).

Нет похожих постов.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность. связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P=IxU. единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Синусоида

Кривая на рисунке 2 – синусоида показывает, что э. д. с. непрерывно изменяется, причем число ее мгновенных значений в течении периода безгранично: их столько же, сколько точек может поместится на синусоиде. В течение периода мгновенные одинаковые значения э. д. с. одного знака бывают дважды. За период э. д. с. 2 раза достигает наибольших (максимальных, амплитудных) значений, но один раз это положительное, другой раз – отрицательное значение. Одним словом, по синусоиде можно составить самое полное представление об изменениях синусоидальной э. д. с. (тока) с течением времени.

Видео 2. Синусоида

Что такое переменный ток

В электрических розетках у нас в квартирах тоже течет переменный ток. Мы знаем, что переменный ток это ток, который регулярно меняет свое направление. То есть в случае переменного тока у нас не будет положительного полюса источника и отрицательного. Как же получают переменный ток?

В самом деле, в нашей стране используют ток частотой 50 Гц, то есть, направление такого тока меняется 50 раз в секунду. Не крутят же на электростанциях с такой скоростью батарейки или иные источники постоянного тока. Очевидно, что ток получают каким-то другим способом. Интересно, каким? Тогда разберемся.

Получение переменного электрического тока возможно благодаря использованию явления электромагнитной индукции . Это явление заключается в том, что при изменении магнитного потока, пронизывающего замкнутый проводящий контур, в контуре возникает электрический ток.

Трехфазная система

Наибольшее распространение в электротехнике получила симметричная трехфазная система э. д. с. Она представляет три одинаковые по частоте и амплитуде переменные э. д. с., между которыми существует сдвиг на 1/3 периода. Совокупность токов, возникающих под действием этих э. д. с., называется трехфазной системой токов или, как обычно говорят, трехфазным током.

Если нагрузки всех трех фаз во всех отношениях одинаковы (например, представляют собой обмотки трехфазного электродвигателя, или театральную люстру, в которой каждая из фаз питает одинаковое количество одинаковых ламп, или является трехфазной конденсаторной батареей и тому подобным), то трехфазная система токов будет симметричной. Это самый благоприятный и самый простой случай.

В симметричной системе значения токов всех фаз равны, токи одинаково сдвинуты относительно соответствующих напряжений, а между токами смежных фаз сдвиг равен 1/3 периода.

В практике же часто встречаются несимметричные нагрузки. Например, всегда существует несимметрия в осветительных сетях, значительную асимметрию создает электрическая тяга на переменном токе. Симметрия резко нарушается в аварийных режимах (короткое замыкание, обрыв одного провода, нарушение контакта в одной из фаз и тому подобное).

Трехфазный ток был изобретен в 1891 г. русским инженером М. О. Доливо-Добровольским и получил широчайшее распространение благодаря своим замечательным свойствам: а) с помощью трехфазного тока можно передать энергию с затратой значительно меньшего количества проводникового материала, чем потребовалось бы при передаче однофазным током; б) с помощью трехфазного тока в неподвижных обмотках электродвигателей создается вращающее магнитное поле, увлекающее за собой роторы самых простых по конструкции и самых распространенных асинхронных электродвигателей.

В зависимости от вида соединений трехфазных генераторов, трансформаторов и электроприемников можно получить те или иные практические результаты.

Видео 3. Получение электрической энергии переменного тока

1 В электротехнике мгновенные значения синусоидальных величин принято обозначать строчными (маленькими) буквами, в нашем примере e1 и e2: максимальные значения обозначаются прописными (большими) буквами с индексом «м», в нашем примере E и E.2 Действующие значения обозначают прописными буквами без индекса «м»: E, U, I.

Техника построения векторов

Техника построения векторов для двух э. д. с. поясняется рисунком 10, а. Слева на нем изображены синусоиды и ясно видно, что э. д. с. e2 опережает e1 на угол α. Справа э. д. с. e1 изображена вектором E, который расположен горизонтально (то есть так, чтобы его проекция на ось 1–1 была равна мгновенному значению e1 в точке ) и стрелкой показано направление вращения 1. Затем по этому направлению отложен угол α и построен вектор э. д. с. E.

Рисунок 10. Определение сдвига фаз при помощи вектора

Построение можно выполнить иначе. После построения вектора E (который расположен горизонтально) через точку пересечения синусоиды e2 с вертикалью 2–2 проведена горизонтальная штриховая линия (она отсекает мгновенное значение э. д. с. e2, соответствующее точке ). Затем радиусом длиной E из точки ‘ как из центра сделана засечка, после чего построен вектор E. При таком построении угол α получается автоматически.

Примеры векторных диаграмм (то есть совокупности векторов, изображающих синусоидальные величины одинаковой частоты для различных углов сдвига фаз между e1 и e2) даны на рисунке 10, б–е.

Обратите особое внимание на рисунок 10, е, который соответствует рисунку 10, г и показывает, что как бы ни располагалась на чертеже векторная диаграмма, сдвиг фаз от этого на ней не изменяется и это весьма важно

Получение многофазных токов

Если в генераторе имеется одна, а несколько обмоток и если они одинаковы по конструкции, числу витков, сечению провода, то синусоиды, изображающие изменение э. д. с. в каждом из них, одинаковы. Однако располагать их на чертеже нужно в соответствии как со взаимным расположением обмоток, так и с направлением вращения. Поясним на примерах.

Рисунок 4. Расположение синусоид на чертежах в зависимости от направления вращения ротора генератора

На рисунке 4 показан генератор с двумя обмотками ax и by, которые размещены в одних и тех же пазах и, следовательно, одинаково перемещаются относительно магнита. Поэтому синусоиды, изображающие изменение э. д. с. в обеих обмотках, совпадают. Но если вращение происходит против часовой стрелки, наблюдение за изменениями э. д. с. начинается в тот момент, когда обмотки занимают положение, показанное на чертеже, и синусоиды начерчены, как на рисунке 4, а, то при вращении по часовой стрелке синусоиды изображают иначе (рисунок 4, б). Почему? Потому, что в первом случае проводники раньше проходят под северным полюсом, во втором – раньше под южным.

Рисунок 5. Сдвиг э. д. с. двух обмоток на четверть периода

Генератор на рисунке 5, а тоже имеет две обмотки, но расположенные под прямым углом. Поэтому они проходят под полюсами неодновременно. Значит, максимальные значения э. д. с. в них наступают в разное время и, следовательно, синусоиды должны быть сдвинуты. Остается выяснить, на какую часть периода и в какую сторону. Решают эти вопросы следующим образом.

1. Синусоиду э. д. с. одной обмотки, например ax, располагают на чертеже произвольно и через точку , от которой в дальнейшем будет вестись отсчет времени, проводят вертикаль 1–1 (рисунок 5, б). 2. Определяют по рисунку 5, а, какому положению проводника соответствует точка и где в это время находится проводник b: опережает он проводник a по направлению вращения или отстает от него. В нашем случае проводник b опережает проводник a. Действительно, последний еще на нейтрали, э. д. с. в нем равна нулю, а проводник b – уже под полюсом и его э. д. с. достигла максимума. 3. Определяют, какой знак имеет э. д. с. в обмотке by в точке , чтобы знать, как начинать построение синусоиды э. д. с. обмотки by в точке – под горизонтальной осью или на ней. Если обмотка by находится в области того же полюса, к которому при вращении приближается обмотка ax, значит знаки у э. д. с. одинаковы. В нашем примере э. д. с. обмотки ax положительна и обе обмотки находятся в области одного и того же полюса. Поэтому синусоида э. д. с. обмотки by в точке тоже должна быть положительна. 4. Определяют на какую часть периода обмотка by сдвинута относительно обмотки ax. Это видно из рисунка 5, а и г, на которых представлены соответственно двухполюсный и четырехполюсный генераторы. Длительность периода Т в любом случае определяется расстоянием между одноименными полюсами и частотой (скоростью) вращения. Нетрудно видеть, что расстояние между началами обмоток, то есть между проводниками a и b, равно четверти периода. 5. Остается совместить синусоиды э. д. с. Обмоток ax и by, что сделано на рисунке 5, д, где ясно виден сдвиг между ними на четверть периода Т/4, или на 90 электрических градусов.

Генератор с тремя обмотками ax, by и cz показан на рисунке 6. Обмотки равномерно распределены по окружности, то есть сдвинуты друг относительно друга на треть периода Т/3 или на 120 эл. градусов. При данном расположении обмоток и вращении против часовой стрелки э. д. с. обмотки ax опережает на Т/3 э. д. с. обмотки by, которая в свою очередь опережает на Т/3 э. д. с. обмотки cz.

Рисунок 6. Электродвижущие силы трех обмоток, сдвинутых на треть периода

Каждая обмотка генератора (трансформатора, электродвигателя переменного тока) обычно называется фазой.

Генераторы с одной обмоткой являются однофазными, с двумя обмотками – двухфазными, с тремя – трехфазными и так далее. Если э. д. с. в разных обмотках достигают нулевых (или максимальных) значений в разное время, то говорят, что между фазами существует сдвиг, который определяют в долях периода или электрических градусах.

Сложение и вычитание векторов

На рисунке 12, а изображены три вектора A, B и C. На рисунке 12, б показано их сложение по правилу параллелограмма, а именно: сначала найдена сумма двух векторов A и B (B и C, A и C), а затем к ней прибавлен вектор C (A, B). Рисунок 12, в показывает другой способ сложения этих же векторов в четырех вариантах

Обратите внимание на направление вектора суммы. Сравнивая рисунки 12, б и в, легко видеть, что в любом случае получены одинаковые результаты

Рисунок 12. Сложение и вычитание векторов

Для вычитания одного вектора из другого вычитаемый вектор поворачивают на 180° (то есть ему дают обратный знак), после чего по правилу параллелограмма производят сложение (рисунок 12, г). Другой способ вычитания этих же векторов иллюстрирует рисунок 12, д. Заметьте: вектор-разность направлен к концу того вектора, из которого сделано вычитание. Так, на рисунке 12, д, слева, вектор-разность направлен к концу вектора B.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *