Стабилизатор тока для светодиодов, схемы

Полупроводниковые диоды

Полупроводниковый диод — это полупроводниковый прибор с одним электронно-дырочным переходом (основная часть) и двумя выводами. Примеры внешнего вида диодов приведены на рис. 1.

Рис. 1. Полупроводниковые диоды.

По конструкции полупроводниковые диоды могут быть плоскостными и точечными. Устройство плоскостного диода показано на рис. 2. К кристаллодержателю припаивается пластинка полупроводника n-типа. Кристалложержатель – это металлическое основание плоскостного диода. Сверху в пластинку полупроводника вплавляется капля трёхвалентного металла, обычно индия. Атомы индия диффундируют (проникают) в полупроводниковую пластинку и образуют у её поверхности слой р-типа. Между слоями р- и n-типов образуется электронно-дырочный переход (ЭДП). К кристаллодержателю и индию припаиваются проводники, которые служат выводами диода. Для предохранения диода от механических повреждений, попадания света, пыли и влаги на полупроводник, его помещают в герметичный корпус.

На рис. 2 позиция 1 – это вывод р-области, позиция 2 – вывод n-области.

Рис. 2. Устройство плоскостного диода.

Точечный полупроводниковый диод состоит из пластинки полупроводника n-типа и заострённой пружинки из вольфрама или фосфористой бронзы диаметром около 0,1 мм. Через прижатую к полупроводниковой пластинке пружинку пропускают электрический ток большой силы, в результате чего металлическая пружинка сваривается с полупроводниковой пластинкой, образуя под своим остриём р-область. Между р-областью и полупроводником n-типа возникает электронно-дырочный переход.

На рис. 3 приведены условные графические обозначения (УГО) различных диодов. Острая вершина треугольника в УГО указывает на направление протекания прямого тока через диод. То есть для того, чтобы диод пропускал ток, включать его нужно так, чтобы на основание треугольника подавался «плюс» (или на прямолинейный отрезок подавался «минус»). Если включить диод в обратном направлении, то он не будет пропускать ток (потому и называется полупроводником – пропускает ток только в одном направлении). Пример включения диода показан на рис. 4. Пример применения диода можно увидеть на рис. 5.

Рис. 3. Условное графическое обозначение (УГО) диодов.

р-область диода (то есть вывод, на который в прямом направлении подаётся «плюс») носит название анод. Противоположный вод называется катод.

Рис. 4. Включение диода.

Светодиоды в электрической схеме

Светодиод работает при пропускании через него тока в прямом направлении (то есть анод должен иметь положительный потенциал относительно катода).

Из-за круто возрастающей вольт-амперной характеристики p-n-перехода в прямом направлении светодиод должен подключаться к источнику тока. Подключение к источнику напряжения должно производиться через элемент (или электрическую цепь), ограничивающий ток, например, через резистор. Некоторые светодиоды могут иметь встроенную токоограничивающую цепь, в таком случае для них указывается диапазон допустимых напряжений источника питания.

Непосредственное подключение светодиода к источнику напряжения, превышающего заявленное изготовителем падение напряжения для конкретного светодиода, может вызвать протекание через него тока, превышающего предельно допустимый, перегрев и мгновенный выход из строя. В простейшем случае (для маломощных индикаторных светодиодов) токоограничивающая цепь представляет собой резистор, последовательно включенный со светодиодом. Для мощных светодиодов применяются схемы с ШИМ, которые поддерживают средний ток через светодиод на заданном уровне и, при необходимости, позволяют регулировать его яркость.

Недопустимо подавать на светодиоды напряжение обратной полярности от источника с малым внутренним сопротивлением. Светодиоды имеют невысокое (несколько вольт) обратное пробивное напряжение. В схемах, где возможно появление обратного напряжения, светодиод должен быть защищён параллельно включенным обычным диодом в противоположной полярности.

Основные характеристики светодиодов

1. Эффективность свечения (светоотдача)

Наиболее значимая характеристика светодиодов, обуславливающая экономическую целесообразность их использования в системах освещения различного назначения. Определяется, как отношение потока излучения к затрачиваемой мощности (Лм/Вт). Для сравнения: — 10-12лм/Вт — лампа накаливания; — 40-150Лм/Вт — газоразрядные лампы; — 50-120Лм/Вт — светодиоды.

Таким образом, светодиоды характеризуются прекрасными показателями светоотдачи, что дает возможность им выигрышно конкурировать с натриевыми, галогеновыми и люминесцентными лампами. Помимо этого, при выпуске светодиодных светильников не требуются отражатели, потому что их световой поток направляется в одной полуплоскости.

2. Мощность

— светодиоды малой мощности: до 0,5Вт; — светодиоды средней мощности: 0,5-3Вт; — светодиоды большой мощности: 3Вт и выше.

3. Цветовая температура

— 2500-4000К: белый теплый свет, схож с лампами накаливания; — 4000-6500К: белый нейтральный свет; — 6500-9500К: белый холодный свет. В результате экспериментальных исследований установлено, что именно белый нейтральный свет отличается наибольшей четкостью передачи цветов и является наиболее удачным для работы с документами в офисных условиях.

4. Деградация

Это процесс постепенной потери показателей работоспособности светодиодов. Обычно производители указывают около 100 тыс. час. работы и более. Существенное влияние на ресурс светодиодов оказывает чрезмерное воздействие токов, превышающих их номинальное значение, и высоких температур, для предотвращения преждевременного старения применяются специальные конструкторские решения. 

К еще одной разновидности деградации светодиодов относится пусковое воздействие. Оно невысоко и составляет порядка 5-6%, выявляется обычно в первые 1000 часов горения светильника.

5. Угол свечения

Обычно у светодиодов он равен 120-140 градусов, а в индикаторных светодиодах — 15-45 градусов.

Технологические новшества в наше время происходят постоянно. Ежегодное появление новинок электроники, бытовой техники, автомобилестроения стало привычным явлением. То, что удивляло дватри года назад, часто уже безнадежно устарело к сегодняшнему дню. Большинство изменений касается улучшения существующих вещей, например, двигатель автомобиля становится более экономичным и экологически чистым от модели к модели. Вносимые улучшения понятны в основном узкому кругу специалистов.

Принцип работы

При пропускании электрического тока через p-n-переход в прямом направлении носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).

Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

Преимущества

По сравнению с другими электрическими источниками света светодиоды имеют следующие отличия:

  • Высокая световая отдача. Современные светодиоды сравнялись по этому параметру с натриевыми газоразрядными лампами и металлогалогенными лампами, достигнув 146 люмен на ватт.
  • Высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих).
  • Длительный срок службы — от 30000 до 100000 часов (при работе 8 часов в день — 34 года). Но и он не бесконечен — при длительной работе и/или плохом охлаждении происходит «деградация» кристалла и постепенное падение яркости.
  • Количество циклов включения-выключения не оказывают существенного влияния на срок службы светодиодов (в отличие от традиционных источников света — ламп накаливания, газоразрядных ламп).
  • Спектр современных белых светодиодов бывает различным — от тёплого белого = 2700 К до холодного белого = 6500 К.
  • Спектральная чистота, достигаемая не фильтрами, а принципом устройства прибора.
  • Отсутствие инерционности — включаются сразу на полную яркость, в то время как у ртутно-люминофорных (люминесцентных-экономичных) ламп время включения от 1 с до 1 мин, а яркость увеличивается от 30 % до 100 % за 3-10 минут, в зависимости от температуры окружающей среды.
  • Различный угол излучения — от 15 до 180 градусов.
  • Низкая стоимость индикаторных светодиодов.
  • Безопасность — не требуются высокие напряжения, низкая температура светодиода, обычно не выше 60 °C.
  • Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.
  • Экологичность — отсутствие ртути, фосфора и ультрафиолетового излучения в отличие от люминесцентных ламп.

Визуальный метод определения полярности

Первый способ определения – визуальный. У диода два вывода. Короткая ножка будет катодом, анод у светодиода всегда длиннее. Запомнить легко, так как присутствует начальная буква «к» и в том и другом слове.

 Длина выводов светодиода

Когда оба вывода согнуты или прибор снят с другой платы, их длину бывает сложно определить. Тогда можно попробовать разглядеть в корпусе небольшой кристалл, который выполнен из прозрачного материала. Он располагается на небольшой подставке. Этот вывод соответствует катоду.

Также катод светодиода можно определить по небольшой засечке. В новых моделях светодиодных лент и ламп применяются полупроводники для поверхностного монтажа. Имеющийся ключ в виде скоса указывает на то, что это отрицательный электрод (катод).

Иногда на светодиодах стоит маркировка «+» и «-». Некоторые производители отмечают катод точкой, иногда линией зеленого цвета. Если нет никакой отметки или ее трудно разглядеть из-за того, что светодиод был снят с другой схемы, нужно произвести тестирование.

Принцип работы светодиодной лампы

Выпускаемые светодиодные лампочки на 220В могут отличаться между собой внешним дизайном, но принцип внутреннего устройства сохраняется для всех моделей. Излучение света в лампах выполняется светодиодами, число и размеры кристаллов которых может варьироваться в зависимости от мощности и возможностей охлаждения. Их цветовой спектр задается веществом, входящим в структуру каждого кристаллика.

Чтобы добраться до пускового драйвера, необходимо аккуратно снять защитную «юбочку» лампы. Под ней откроется печатная плата либо монтажная сборка из соединенных между собой радиоэлементов. На входе драйвера расположен диодный мост, подключенный к электрическому цоколю лампы, контактирующему с патроном. Благодаря ему переменное питающее напряжение выпрямляется в постоянное, поступает на плату и через нее подается к светодиодам.

Чтобы лучше рассеять излучаемый поток и защитить кристаллы от прикосновений, а также избежать их контакта с посторонними предметами, снаружи устанавливается рассеивающее защитное стекло (прозрачная пластмассовая колба). Поэтому своим внешним видом они очень напоминают традиционные источники света.

Для вкручивания лампочки в патрон их цоколи выполняют стандартных размеров Е14, Е27, Е40 и т.д. Это позволяет использовать Led лампы в домашней сети не прибегая к каким либо изменениям в электропроводке.

Что такое светодиод

Светоизлучающий диод является оптоэлектронным устройством, способным излучать свет, когда через него проходит электрический ток. Светоизлучающий диод только пропускает электрический ток в одном направлении и производит некогерентное монохроматическое или полихроматическое излучение от преобразования электрической энергии.

Он имеет несколько производных:

  • OLED.
  • AMOLED.
  • FOLED.

 Из-за световой эффективности светодиоды на современном этапе представляют собой 75% рынка внутреннего и автомобильного освещения. Они используются при строительстве телевизоров с плоским экраном, а именно: для подсветки ЖК-экранов или источника электроэнергии. Используются в качестве основного освещения в OLED-телевизорах.

Первые светодиоды, поступившие в продажу, производили инфракрасный, красный, зеленый, а затем желтый свет. Выход синего светодиода, связанный с техническим и монтажным прогрессом, позволяет покрыть диапазон длины волны излучения, простирающийся от ультрафиолетового (350 нм) до инфракрасного (2 тыс. нм), который отвечает многим потребностям. Многие устройства оснащены составными светодиодами (три в одном компоненте: красный, зеленый и синий) для отображения многих цветов.

Недостатки светодиодов

Самой большой проблемой при проектировании светодиодных светильников является решение вопроса о том, что делать с выделяемым теплом. Как уже говорилось, светодиод преобразует электрический ток непосредственно в световой поток.

Это достоинство, которое превращается в недостаток, когда речь заходит об отводе тепла. Дело в том, что светодиод практически не излучает мощности в инфракрасном диапазоне спектра. Инфракрасное излучение мы ощущаем как тепло, исходящее от лампочки. Оно бесполезно с точки зрения наших глаз, но очень хорошо отводит лишнее тепло от источника света.

{xtypo_quote}На практике в свет превращается около 25% энергии, а остальное переходит в тепло. Полупроводники не любят нагрев, их срок службы существенно падает при температуре выше 130-150 0С. (для сравнения – спираль лампочки накаливания нагревается до 2300 0С, а у галогенной – до 2700 0С). {/xtypo_quote}

Итак, недостаток № 1: нужно отводить тепло и делать это приходиться при помощи радиаторов, а иногда даже активных систем охлаждения. Для того, чтобы получить ожидаемую эффективность светодиодного светильника, требуется позаботиться о правильном источнике питания. Источник должен обеспечивать стабилизированный ток (а не напряжение, как требует подавляющее большинство устройств) на уровне от 100 мA до 1 А в зависимости от типа диода. Для достижения эффективности обычно используются импульсные источники с коррекцией коэффициента мощности.

Недостаток № 2 – относительно сложная схема питания.

Недостаток № 3, вероятно существующий лишь временно, – высокая цена светодиодов. В светотехнической отрасли принято говорить о люменах, получаемых на затраченный доллар или евро. На сегодняшний момент эта величина составляет до 3 евроцентов за 1 люмен, что на порядок выше, чем стоимость 1 люмена в люминесцентной лампе. Это основной фактор, препятствующий широкому распространению светодиодных светильников в быту. Однако в тех областях, где значение имеет стоимость владения, включающая стоимость обслуживания, светодиоды уже обходятся дешевле обычных ламп.

Чтобы в этом убедиться, достаточно подсчитать стоимость работ с применением автовышки по замене ламп в мачтах уличного освещения, не говоря уж о существенной экономии электроэнергии. Очень часто переход на светодиоды производится просто изза физической нехватки электрической мощности в районе.

Не случайно в начале статьи приведена история о радиолампах и транзисторах. Помимо лучших технических характеристик, которыми, кстати, первые транзисторы не особенно могли похвастаться, полупроводники открыли дорогу в отрасль для тысяч мелких компаний. С их появлением резко уменьшился финансовый и технологический барьер для выхода на рынок. Первые компьютеры новой эры были собраны в гаражах. Гиганты потеряли монополию, и в электронную индустрию пришла невероятно сильная конкуренция.

{xtypo_quote}Появление светодиодов открывает дорогу к производству светильников огромному количеству компаний, которые ранее этим не занимались. Все, что нужно на первом этапе, – это обычное оборудование для сборки электронных плат. В нашей стране существует избыток такого производства, который ждет своего часа.{/xtypo_quote}

Принцип работы светодиода

Основные рабочие характеристики любого светоизлучающего диода сходны с характеристиками обычного диода. Когда подается напряжение, то электроны двигаются от материала N-типа через P-N переход и соединяются с отверстиями в материале P-типа. В обычных диодах энергия, которая возникает в результате соединения электронов с отверстиями, выделяется в виде тепла. Однако, когда речь идет о светодиодах, то энергия в них выделяется в первую очередь в виде света.

Схема светодиода

Светодиоды могут изготавливаться таким образом, что будут испускать красный, зеленый, голубой, инфракрасный или ультрафиолетовый свет. Это достигается путем изменения количества и типа материалов, которые используются в качестве присадки. Яркость света также может изменяться, что осуществляется с помощью управления количеством тока, проходящего через светодиод. Однако, как и любой другой диод, СИД имеет предельные значения тока, которые он может выдержать.

CL6807

По внутреннему устройству и принципу действия микросхема-драйвер светодиодов CL6807 полностью идентична рассмотренной выше PT4115. Имеются лишь некоторые отличия в технических характеристиках. Вот самые главные из них:

  • напряжение питания 6-35В;
  • максимальный ток нагрузки — 1А;
  • имеет мягкий старт;
  • максимальный КПД — 95%;
  • выпускается в трех различных корпусах: SOT89-5, SOT23-5, SOP8 (цоколевка SOT89-5 полностью совпадает с PT4115).

Сопротивление токозадающего резистора (в Омах) рассчитывается точно по такой же формуле:

R = 0.1 / ILED

Типовая схема включения выглядит так:

Как видите, все очень похоже на схему светодиодной лампы с драйвером на РТ4515. Описание работы, уровни сигналов, особенности используемых элементов и компоновки печатной платы точно такие же как у , поэтому повторяться не имеет смысла.

CL6807 продают по 12 руб/шт, надо только смотреть, чтоб не подсунули паяные (рекомендую брать тут).

Светодиодная лампа на 220 вольт своими руками

Светодиодные лампы (лампы на светоизлучающих диодах) иногда их также называют твердотельные лампы, становятся очень популярными в последние годы. Они являются достаточно экономичным источником света. И хотя их световой поток, как правило, (в 2010 году) слабее, чем у тех же ламп накаливания или энергосберегающих ламп дневного света, их преимуществом является очень низкое энергопотребление, которое в большинстве случаев составляет 0,5…3 ватт. К счастью, благодаря новым технологиям, выпуск новых светодиодов с большим световым потоком растет из года в год.

Доступны светодиоды различных цветов, но наиболее востребованными остаются светодиоды белого цвета. Белые светодиоды обладают различными значениями температуры спектра, начиная от теплого белого, имитируя обычные лампы дневного света (2700 10 000 K).

Помимо этого необходимо делать различие между точечными и рассеивающими светодиодами, которые имеют угол рассеивания от 10 до 150 градусов.Цены на светодиоды, с техническим прогрессом, продолжают снижаться, а световая отдача становится все больше.

Питание светодиодной лампы от сети 220 вольт

Для питания светодиодной лампы от сети 220 вольт необходимо, создать подходящий источник питания или балласт. Для снижения энергопотребления и минимизации размеров лампы, применение трансформатора не является хорошим выбором. Поэтому, как правило, применяют гасящий конденсатор в цепи переменного тока. Так же в цепь включают сопротивление для ограничения пускового тока. Параллельно гасящему конденсатору подключают резистор, для того чтобы обеспечить разряд после выключения.

Большинство светодиодов имеют ток потребления не более 20мА, этот соответствует току (в случае использования в лампе небольшого числа светодиодов) полученному при использовании конденсатора в 330нФ. Светодиоды могут быть подключены группами в различном количестве, не превышая общего количества в 20 светодиодов.

Для бОльшего количества светодиодов необходимо подобрать большую емкость гасящего конденсатора. Рассчитать необходимую емкость поможет онлайн калькулятор .

Наиболее распространенный размер светодиода 5мм. Для первой светодиодной лампы использованы 5 миллиметровые светодиоды белого холодного свечения 5 штук с током 20 мА и с большим углом рассеивания в 150 градусов.

Для второй светодиодной лампы – 15шт. 5 мм светодиодов с типовой яркостью 15000 мкд и углом рассеивания 25 30 градусов. Максимальный ток потребления светодиода составляет 30 мА, а падение на одном светодиоде около 3,1 В.

Источник питания светодиодной лампы улучшается с применением электролитического конденсатора подключенного параллельно цепи светодиодов. Это устраняет стробоскопический эффект, а также защищает светодиоды от пусковых токов и помех в электросети.

Внимание! Источник питания светодиодной лампы не имеет гальванической развязки с электроцепи 220 вольт

Поэтому наладку и эксплуатацию данного устройства необходимо проводить с особой осторожностью

Применение светодиодов

Основная статья: Светодиодное освещение

На светодиодном экране показывают Tour de France 2010, Paris

  • В уличном, промышленном, бытовом освещении (в том числе светодиодная лента).
  • В качестве индикаторов — как в виде одиночных светодиодов (например, индикатор включения на панели прибора), так и в виде цифрового или буквенно-цифрового табло (например, цифры на часах).
  • Массив светодиодов используется в больших уличных экранах, в бегущих строках, информационных табло. Такие массивы часто называют светодиодными кластерами или просто кластерами.
  • В оптопарах.
  • Мощные светодиоды используются как источник света в фонарях, прожекторах, светофорах, лампах тормозного освещения в автомобилях.
  • Светодиоды используются в качестве источников модулированного оптического излучения (передача сигнала по оптоволокну, пульты ДУ, светотелефоны, интернет).
  • В подсветке ЖК-экранов (мобильные телефоны, мониторы, телевизоры, планшеты и т. д.).
  • В играх, игрушках, значках, USB-устройствах и прочее.
  • В светодиодных дорожных знаках.
  • В гибких ПВХ световых шнурах Дюралайт.
  • В растениеводстве, так называемые фитолампы, оптимизированные под фотосинтез. В северных странах перспективная замена освещения в теплицах.

Как выбрать нужный драйвер

Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

  1. выходной ток;
  2. максимальное выходное напряжение;
  3. минимальное выходное напряжение.

Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3…4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

Следовательно, для наших целей подойдет что-нибудь вроде этого:

Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

Светодиоды Какой нужен драйвер
60 мА, 0.2 Вт (smd , )
150мА, 0.5Вт (smd , , ) драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
300 мА, 1 Вт (smd , , 5730-1, LED 1W) драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
700 мА, 3 Вт (led 3W, фитосветодиоды) драйвер 700мА (для 6-10 светодиодов)
3000 мА, 10 Ватт (XML2 T6) драйвер 3A, 21-34V (на 7-10 светодиодов) или см.

Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

Цвета и материалы

См. также: Синий светодиод и Белый светодиод

Розовый светодиод диаметром 5 мм

Обычные светодиоды изготавливаются из различных неорганических полупроводниковых материалов, в следующей таблице приведены доступные цвета с диапазоном длин волн, падение напряжения на диоде и материал:

Цвет длина волны (нм) Напряжение (В) Материал полупроводника
Инфракрасный λ > 760 ΔU Арсенид галлия (GaAs)Алюминия галлия арсенид (AlGaAs)
Красный 610 λ 1,63 U Алюминия-галлия арсенид (AlGaAs)Галлия арсенид-фосфид (GaAsP)Алюминия-галлия-индия фосфид (AlGaInP)Галлия(III) фосфид (GaP)
Оранжевый 590 λ 2,03 U Галлия фосфид-арсенид (GaAsP)Алюминия-галлия-индия фосфид (AlGaInP)Галлия(III) фосфид (GaP)
Жёлтый 570 λ 2,10 U Галлия арсенид-фосфид (GaAsP)Алюминия-галлия-индия фосфид (AlGaInP)Галлия(III) фосфид (GaP)
Зелёный 500 λ 1,9U Индия-галлия нитрид (InGaN) / Галлия(III) нитрид (GaN)Галлия(III) фосфид (GaP)Алюминия-галлия-индия фосфид (AlGaInP)Алюминия-галлия фосфид (AlGaP)
Синий 450 λ 2,48 U Селенид цинка (ZnSe)Индия-галлия нитрид (InGaN)Карбид кремния (SiC) в качестве субстратаКремний (Si) в качестве субстрата — (в разработке)
Фиолетовый 400 λ 2,76 U Индия-галлия нитрид (InGaN)
Пурпурный Смесь нескольких спектров 2,48 U Двойной: синий/красный диод,синий с красным люминофором,или белый с пурпурным пластиком
Ультрафиолетовый λ 3,1 U Алмаз (235 нм)

Нитрид бора (215 нм)Нитрид алюминия (AlN) (210 нм)
Нитрид алюминия-галлия (AlGaN)
Нитрид алюминия-галлия-индия (AlGaInN) — (менее 210 нм)

Белый Широкий спектр ΔU ≈ 3,5 Сочетание трех светодиодов основных цветов (красный, синий, зеленый), либо люминофор, излучающий белый цвет под воздействием светодиода со спектром от синего до ультрафиолетового;

Несмотря на то, что в мире широко выпускаются белые светодиоды в конструктиве синего/фиолетового свечения кристалла с нанесенным на него желтым или оранжевым люминофором, ничто не мешает нанести и люминофоры другого цвета свечения. В результате нанесения красного люминофора получают пурпурные или розовые светодиоды, гораздо реже выпускают светодиоды салатного цвета, где на синий кристалл наносится люминофор зеленого цвета свечения.

Светодиоды также могут иметь цветной корпус.

В 2001 году Citizen Electronics первой в мире произвела цветной SMD светодиод из цветной пастели под названием PASTELITE.

Достоинства светодиодов

Итак, первое и самое главное достоинство – энергетическая эффективность. Электрический ток в светодиоде преобразуется непосредственно в кванты света – фотоны. Такое преобразование теоретически происходит без потери энергии – сколько энергии потрачено, столько и излучается. На практике потери, конечно, есть, но уже достигнуты впечатляющие результаты по сравнению с другими источниками. Светораспределение светильника создается с гораздо меньшими потерями света. 

Надежность и время жизни. Начнем с самого определения времени жизни устройства. Для светодиода за время жизни принято количество часов, которое он проработает до снижения его светового потока на 30%. Лидирующие производители (например, Osram) заявляют о времени жизни более 100 тыс. часов.

{xtypo_quote}Сравним: лампа накаливания – 1000 часов, стандартная люминесцентная лампа – 12 тыс. часов, газоразрядные лампы – до 40 тыс. часов. Данные по традиционным источникам света приведены по критерию полного выхода источника из строя. {/xtypo_quote}

Малый размер светодиода. Мощный одноваттный светодиод серии OSLON производства Osram имеет размер корпуса 3х3 мм. Это позволяет вписы-вать его в любую конструкцию светильника, а также создавать миниатюрные и при этом очень мощные осветительные приборы. (рис. 3). Экологическая безопасность.

Светодиод сам по себе содержит сотые доли грамма вещества в кристаллической, крайне химически инертной форме. Люминесцентная лампочка содержит очень опасные для человека и природы вещества, такие как ртуть. Утилизация таких ламп дорогостоящий и сложный процесс.

Время включения-выключения и управление яркостью. Светодиоду требуются доли микросекунд (150 нс для белого одноваттного светодиода Golden Dragon Plus) для начала работы с полной отдачей после подачи на него электрического тока. Это дает возможность регулировать световой поток путем подачи коротких импульсов тока, следующих с высокой частотой.

Таким образом, яркость светильника может регулироваться в любых пределах с сохранением 100 % эффективности. Можно отметить и еще один эффект – светодиод некритичен к количеству циклов включений-выключений, что является бичом, например, недорогих энергосберегающих ламп.

Механическая прочность и стойкость к ударам. Светодиод – это твердый кристалл в пластиковой или керамической оболочке. При желании его можно уничтожить при помощи молотка. На практике он абсолютно не чувствителен к вибрациям и другим воздействиям, характерным для условий промышленного применения.

Стабильная работа при низких температурах без сокращения срока службы и потери яркости. Светодиодному светильнику не требуется запуск, он практически мгновенно выходит на заданный температурный режим.

Органические светодиоды OLED

Основная статья: OLED

Многослойные тонкоплёночные структуры, изготовленные из органических соединений, которые эффективно излучают свет при пропускании через них электрического тока. Основное применение OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, чем жидкокристаллических.

Главная проблема для OLED — время непрерывной работы, которое должно быть не меньше 15 тыс. часов. Одна из проблем, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причём время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED все-таки добрался до отметки в 17,5 тыс. часов (2 года) непрерывной работы.

Дисплеи из органических светодиодов применяются в последних моделях сотовых телефонов, GPS-навигаторах, OLED-телевизорах, для создания приборов ночного видения.

Важные нюансы

Существует множество систем, согласно которым светодиодное освещение функционирует от переменного тока номиналом 220 Вольт. Причем все они, вместе со схемой балласта, призваны решать три основные задачи.

  • Преобразовать переменный ток сети 220в в пульсирующий ток;
  • Выровнять пульсирующий ток, сделав его постоянным;
  • Добиться показателей силы тока в 12 Вольт.

Если вы хотите собрать устройство, питающееся от обычной сети, для подключения придется разобраться с некоторыми основными проблемами.

  1. Где расположить схемы и непосредственно само устройство на основе светодиодов. Ведь для диодов потребуется свое место.
  2. Как можно изолировать устройство осветительного светодиодного прибора.
  3. Как обеспечить необходимый теплообмен для подключения лампы.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector