Релейная защита. Виды и устройство. Работа и особенности

Назначение релейной защиты ТОЭ, РЗА

В своём развитии РЗ прошла пять этапов:

  • защиты при помощи предохранителей;
  • защиты с использованием электромеханических реле;
  • защиты на основе дискретных полупроводниковых элементов;
  • защиты на основе аналоговых электронных микросхем;
  • микропроцессорные защиты.

Основное назначение релейной зачиты

При проектировании и эксплуатации электрической системы необходимо учитывать вероятность возникновения аварий, которые в первую очередь могут привести к выходу из строя дорогостоющего оборудования, что, кроме всего прочего, сопровождается недоотпуском электроэнергии потребителям, недопустимым ухудшением ее качества и влечет за собой дополнительные потери средств на компенсации потребителям.

Аварии возникают вследствие обрыва и схлёстывания проводов, ошибки обслуживающего персонала, старения оборудования, заводских дефектов или загрязнения изоляции. Электрическая дуга в месте короткого замыкания способна вызывать пережоги, оплавления и разрушения электрооборудования.

Степень разрушения зависит от тока в дуге и от время её существования. Чтобы КЗ не вызвало большого ущерба, повреждённое электрооборудование необходимо как можно быстрее отключить.

Совершенно очевидно, что человек обслуживающий установку, не в состоянии за столь короткое время отреагировать на возникновение повреждения и устранить его. Поэтому электрические установки снабжаются специальными электрическими автоматами – релейной защитой.

Чтобы КЗ не вызвало большого ущерба, повреждённое электрооборудование необходимо как можно быстрее отключить, что и являет собой основное назначение релейной защиты.

Дополнительное назначение релейной защиты

К ненормальным режимам относят, прежде всего, перегрузки, замыкание на землю в сети с изолирующей нейтралью одной фазы, снижение или увеличение напряжения относительно предельных нормативных значений, качания в энергосистеме, понижение уровня масла в трансформаторе, выделение в нем газа и др.

В таких случаях повреждение не грозит немедленным разрушением защищаемого объекта, не нарушает непрерывности электроснабжения и не представляет угрозы по условиям техники безопасности, то устройства защиты могут действовать не на отключение, а на сигнал, предупреждающий дежурный персонал о неисправности что являет собой дополнительное назначение релейной защиты.

Общие сведения.

Релейной защитой называют устройство, состоящее из одного или нескольких реле, реагирующих на ненормальные режимы работы в системе. Защита воздействует на выключатели, и они отключают те элементы электрической цепи, которые опасно оставлять в работе. Она также сигнализирует о начале ненормального режима работы (о перегрузке, утечке масла из трансформатора и т. п.). Помимо этого, релейную защиту совместно с устройствами автоматики используют для автоматического повторного включения (АПВ) линий, агрегатов и автоматического ввода резерва в работу (АВР).
Релейная защита должна обладать селективностью, быстродействием, чувствительностью и надежностью в работе. Селективность защиты заключается в том, что при срабатывании ее отключается только поврежденный участок, а неповрежденные элементы остаются в работе. Быстродействие защиты крайне необходимо, так
как при снижении времени отключения поврежденного элемента уменьшаются размеры его разрушения при к. з. и повышается устойчивость работы системы. Под чувствительностью понимается способность защиты реагировать на все виды повреждений и ненормальных режимов в самом начале их возникновения. Защита должна быть надежной, т. е. не должно быть случаев неправильного действия и отказов ее при ненормальных режимах работы в системе.
Реле — это прибор, реагирующий на изменение определенного параметра, характеризующего режим работы установки. Различают реле электрические и неэлектрические. К последним относятся газовые, термические и др.
По способу воздействия на выключатель реле бывают прямого и косвенного действия. Первые воздействуют непосредственно на запирающий механизм выключателя, они громоздки и недостаточно чувствительны. Реле косвенного действия имеют малые размеры и на привод выключателя воздействуют через вспомогательную цепь. Реле могут иметь замыкающие и размыкающие контакты.
Для питания катушек реле косвенного действия необходим независимый источник постоянного или переменного тока. На подстанциях и электростанциях в качестве источника оперативного тока чаще всего применяют аккумуляторную батарею. Источниками переменного оперативного тока являются измерительные трансформаторы тока и напряжения, промежуточные трансформаторы (насыщающиеся) и трансформаторы собственных нужд.
Наибольшее применение получили электромагнитные реле (рис. 51). Их используют в качестве токовых реле, напряжения, времени, промежуточных и сигнальных. Работа индукционных реле основана на взаимодействии двух магнитных потоков, они срабатывают в  результате поворота медного или алюминиевого диска. Их применяют в качестве реле токовых, направления мощности и дифференциальных токовых.


Рис. 51. Электромагнитные реле клапанного (а), соленоидного (б) типов и с вращающимся якорем (в):
1— стальной сердечник; 2 — якорь; 3 — контакты

Реле характеризуется номинальным током и напряжением, током или напряжением трогания (срабатывания) и возврата, коэффициентом возврата, видом автоматических характеристик (независимая и ограниченно зависимая), потребляемой мощностью. При независимой характеристике тока (рис. 52) реле имеет постоянное время срабатывания, не зависящее от тока, а время срабатывания реле с ограниченно зависимой характеристикой 2 зависит от тока в обмотке реле (реле индукционные) .
Для указания типа реле в схемах защиты применяют соответствующие буквы: РТ — реле тока, PH — напряжения, РМ — мощности, PC — сопротивления, РУ— указательное, РВ — времени, РП — промежуточное. РГ — газовое, ТС — температурное и т. п.
Применяют защиты, построенные на полупроводниковых приборах (диодах, транзисторах, тиристорах). Такие реле не имеют контактов и подвижных элементов. По сравнению с электромеханическими реле у них меньше размеры, ниже потребляемая мощность, выше чувствительность, лучше характеристики.
Рис. 52. Характеристики реле
Релейные защиты предназначены для зашиты электрических сетей, генераторов, трансформаторов и других элементов электрических установок. Существует большое количество различных видов релейных защит. Выбор защиты определяется конструкцией сети (воздушная, кабельная), конфигурацией, напряжением сети, режимом работы, способом заземления нейтрали и другими факторами.

ОБЩИЕ ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ ЗАЩИТНЫХ РЕЛЕЙНЫХ УСТРОЙСТВ

Защитные устройства на базе реле разнообразны и могут быть построены по отличающимся принципиальным схемам, реализованным на различной элементной базе.

Общим для всех устройств релейной защиты является наличие одних и тех же функциональных блоков:

  • измерительных органов;
  • логики;
    исполнительных устройств;
  • сигнализации.

Измерительный орган реле получает в непрерывном режиме информацию о состоянии контролируемого объекта, которым может быть отдельная установка, элемент или участок электрической сети. Существует несколько подходов к классификации структурных блоков релейных защит.

Измерительные релейные органы иногда называют пусковыми, но это не меняет сути. Контроль состояния объекта заключается в получении и обработке технических параметров электроснабжения – тока, напряжения, частоты, величины и направления мощности, сопротивления.

В зависимости от значения этих параметров, на выходе релейного органа измерения формируется дискретный логический сигнал («да», «нет»), который поступает в блок логики.

Логический орган, получив дискретную команду релейного блока измерения, в соответствии с заданной программой или логической схемой формирует необходимую команду исполнительному блоку или механизму.

Блок сигнализации обеспечивает работу сигнальных устройств, которые отображают факт срабатывания релейного защитного комплекта или отдельного его органа.

Для успешного выполнения своего предназначения, УРЗА должны обладать определёнными качествами. Выделяют четыре основных требования, которые предъявляются к аппаратуре РЗ. Рассмотрим их по отдельности.

Селективность.

Это свойство защитных систем заключается в выявлении повреждённого участка электрической сети и выполнении отключений в необходимом и достаточном объёме с целью его отделения. Если в результате работы защитной автоматики произошло излишнее отключение оборудования системы электроснабжения, такое срабатывание автоматики называется неселективным.

Различают системы защитной автоматики с абсолютной и относительной селективностью. К первому типу относятся устройства, реагирующие только на нарушения режима строго в пределах защищаемого участка.

Примером такой защитной системы может служить дифференциальный токовый защитный комплект, срабатывающая только при повреждениях между точками сети, в которых контролируется разность токов.

Относительной селективностью обладают системы максимального тока, которые, как правило, реагируют на нарушения режима на участках, смежных с непосредственно защищаемой ими зоной. Обычно во избежание неселективного срабатывания, такие системы автоматики имеют искусственную выдержку времени, превосходящую время срабатывания защитных комплектов на смежных участках.

Примечание. Искусственной называют выдержку времени, создаваемую специальными органами задержки срабатывания (реле времени).

Быстродействие.

Отключение повреждённого участка или элемента сети должно быть осуществлено как можно быстрее, что обеспечивает устойчивость работы остальной части системы и минимизирует время перерыва питания потребителей.

Главным показателем быстродействия служит время срабатывания защищающего устройства, которое отсчитывается от момента возникновения аварийного режима до момента подачи защитой сигнала на отключение выключателя.

Иногда время срабатывания системы автоматики трактуют как время между возникновением повреждения и отключением повреждённого участка, то есть, включают в него время работы выключателя. Это не совсем верно, так как выключатель не является частью УРЗА и по его параметрам нельзя оценивать эффективность релейной защиты сетей и систем электроснабжения.

То есть, учитывать время отключения выключателя необходимо, но следует помнить, что это не характеристика РЗ. Для справки можно заметить, что время отключения выключателя значительно больше времени срабатывания собственно реле автоматики (без учёта искусственной задержки).

Чувствительность.

Данное качество характеризует способность системы автоматики к гарантированному срабатыванию во всей зоне её действия при всех видах нарушений режима, на которые данная автоматика рассчитана. Чувствительность системы автоматики является точным численным показателем, значение которого проверяется в расчётных режимах с минимальными значениями параметров её срабатывания.

Надёжность.

Универсальная характеристика всех технических устройств, заключающаяся в способности РЗ функционировать длительно и безотказно. В соответствии со своим основным предназначением.

Какие преимущества дает УРОВ

Изначально УРОВ, в виде панели с электромеханическими реле, применялось на подстанциях и станциях с РУ 220 кВ и выше. Его применение обусловлено повышенными требованиями к надежности отключение короткого замыкания за наименьший промежуток времени.

Представьте, что на линии 220 кВ, в соответствии с принципом ближнего резервирования, установлены комплекты основной (ДФЗ) и резервных защит (ДЗ, ТЗНП, ТО), и все это бесполезно из-за механической неисправности привода выключателя. Сигнал на отключение защитами выдан, но ничего не происходит, и линия продолжает «гореть».

Остается надежда только на защиты дальнего резервирования, которые установлены на противоположных концах соседних линий.

По требованию дальнего резервирования эти защиты обязаны чувствовать КЗ на смежной лини и устранять их. Но во-первых, выдержки времени в этом случае могут быть достаточно большими (особенно, если ДЗ или ТЗНП начинают чувствовать КЗ только после отключения некоторых параллельных линий). А во-вторых, дальнее резервирование удается обеспечить не всегда. К тому же при действии защит дальнего резервирования происходит отключение множества выключателей на разных подстанциях, что затрудняет работу диспетчера при локализации аварии.

В таких случая, требуется меры по усилению ближнего резервирования, т.е. установке устройства резервирования при отказе выключателя.

УРОВ принимает команду отключения выключателя от защит и если через время Туров отключения не происходит, то устройство дает команду на отключение смежных выключателей. Просто и надежно

При этом время отключения от УРОВ всегда определено как сумма времени действия собственной защиты присоединения плюс ступень селективности. К тому же УРОВ «использует» чувствительность своей защиты, которая выше, чем у защиты дальнего резервирования.

На напряжении 110 кВ и ниже УРОВ использовался реже из-за стоимости панели и отсутствия жестких требований к скорости отключения, как на сверхвысоком напряжении. Ведь панель УРОВ стоит денег и занимает место.

Однако, с развитием микропроцессорной техники функция УРОВ стала практически бесплатной. Распределенный алгоритм УРОВ стал использоваться в логике терминалов, а «снаружи» остались только шинки и ключи ввода/вывода. Сегодня УРОВ применяют на всех классах напряжения, начиная с 6 кВ.

Давайте рассмотрим, что дает УРОВ на стандартной подстанции по схеме «6-1» (одна секционированная система шин 6 кВ).

1 случай (удаленное КЗ на линии 1)

При возникновении короткого замыкания на линии 1 в зоне действия МТЗ (конец линии), защита срабатывает с выдержкой времени 0,9 с. При отказе выключателя алгоритм УРОВ отключит вводной выключатели через время Тзащ. = Тмтз + Туров = 0,9 + 0,3= 1,2 с.

Если алгоритм УРОВ отсутствует, то МТЗ ввода отключит КЗ через 1,5 с (дальнее резервирование).

Таким образом, мы получаем выигрыш 0,3 с.

Также обратите внимание, что здесь для пуска алгоритма мы используем МТЗ линии, а не ввода, что дает значительно большую чувствительность. Особенно сильна эта разница будет для секций 6 кВ с двигателями

2 случай (близкое КЗ на линии 1)

При возникновении короткого замыкания на линии 1 в зоне действия отсечки (начало линии), защита срабатывает с выдержкой времени 0,1 с. При отказе выключателя алгоритм УРОВ отключит вводной выключатели через время Тзащ. = Тто + Туров = 0,1 + 0,3= 0,4 с.

По дальнему резервированию мы так же получим 1,5 с, т.е. теперь выигрыш уже 1,1 с.

Очевидно, что и на 6 кВ применение УРОВ дает преимущество в быстродействии и чувствительности

При всех своих плюсах УРОВ — достаточно «опасная» функция и применять ее нужно обдуманно. Следует помнить, что при срабатывании УРОВ полностью отключает участок сети с блокировкой любой автоматики восстановления питания, такой как АПВ и АВР. Это означает невозможность быстрого восстановления нормального режима и массовый недоотпуск электроэнергии (особенно если нижестоящие потребители не имеют своих АВР).

В связи с этой особенностью при пуске УРОВ, помимо контроля тока через выключатель, применяют различные способы ограничения возможности излишнего действия.

О логике и схемах УРОВ мы поговорим в следующей статье

Основные механизмы релейной защиты

Токовая защита

Токовая защита — это разновидность релейной защиты, которая реагирует на превышение тока на защищаемом участке сети по отношению к току срабатывания, или уставке.В зависимости от того, каким образом обеспечивается селективность действия с последующей (от источника питания) защитой, различают максимальную токовую защиту (МТЗ) и токовую отсечку (ТО).В радиальных (разомкнутых) сетях на ВЛ класса напряжения 6-10 кВ и выше наиболее распространённым вариантом организации защит от трёхфазных и междуфазных коротких замыканий является применение двухступенчатой защиты, включающей МТЗ и ТО.

Для реализации МТЗ в ряде случаев применяются реле с зависимой от времени защитной характеристикой, а для ТО — всегда с независимой.При этом защита может выполняться на двух отдельных реле, или на одном реле, совмещающем обе ступени (например, РТ-80 и РТ-90), а также на базе цифровых многоступенчатых реле (SPAC и др.).

Максимальная токовая защита (МТЗ) — селективность действия обеспечивается за счёт задержки по времени срабатывания.Выбор тока срабатывания МТЗ осуществляется таким образом, чтобы его значение превышало максимальный рабочий ток в месте установки защиты на величину, которая зависит от коэффициентов надёжности и возврата реле, а также от коэффициента самозапуска (обычно не менее, чем в 1,2 — 2,0 раза).Это исключает возможность ложного действия защиты в нормальном режиме работы сети.При протекании тока КЗ срабатывание реле, как было отмечено ранее, происходит с определённой задержкой.Уставка по времени срабатывания предыдущей (от источника питания) защиты должна быть больше, чем уставка последующей, на величину так называемой ступени селективности Δt (порядка 0,2 — 1,0 с — в зависимости от типа реле, на базе которых выполнены защиты).

Таким образом, в радиальных секционированных сетях при коротком замыкании в конце линии первой должна сработать ближайшая к месту возникновения КЗ защита, а в случае её отказа (через промежуток времени, равный ступени селективности) — предыдущая защита. Очевидно, что недостатком МТЗ является «накопление» задержек по времени, т.е. увеличение времени срабатывания защиты при переходе от конца линии к источнику. Следует учитывать, что токи короткого замыкания тем выше, чем ближе место возникновения КЗ к источнику питания.

Таким образом, в радиальных секционированных сетях время отключения повреждённой линии посредством сигнала МТЗ при наиболее тяжёлых КЗ вблизи питающих шин может оказаться неприемлемым с точки зрения термической стойкости оборудования. Считается нормальным, если максимальная уставка по времени срабатывания не превышает 2,0 — 2,5 с.Коэффициент чувствительности МТЗ определяется как отношение тока междуфазного КЗ в конце защищаемой зоны к фактическому току срабатывания защиты, и в соответствии с требованиями ПУЭ (см. п.3.2.1. — 4.1.) должен составлять не менее 1,5 (для зоны дальнего резервирования в пределах действия последующей защиты — около 1,2).

Токовая отсечка (ТО) — селективность действия обеспечивается за счёт отстройки от максимального тока КЗ в конце защищаемой зоны. ТО представляет собой быстродействующую защиту, которая срабатывает без задержки по времени, и отключает наиболее тяжёлые короткие замыкания вблизи питающих шин.Величина тока срабатывания отсечки должна приблизительно в 1,1 — 1,2 раза превышать расчётный ток трёхфазного КЗ в конце зоны действия ТО (т.е. в месте установки последующей защиты); указанная кратность определяется коэффициентом надёжности применяемых реле.

Коэффициент чувствительности ТО, исходя из п.3.2.26. ПУЭ, может быть рассчитан как отношение тока трёхфазного КЗ в месте установки защиты к фактическому току срабатывания отсечки, и должен составлять не менее 1,2. Иначе говоря, зона действия токовой отсечки должна покрывать около 20% от длины линии. Недостатком токовой отсечки является ограниченность зоны действия, поэтому она применяется только совместно с МТЗ в качестве второй ступени; при этом ТО обладает абсолютной селективностью, т.к. величина тока КЗ вне защищаемой зоны всегда меньше тока срабатывания отсечки.

ОСНОВНЫЕ ВИДЫ УСТРОЙСТВ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ

Типы УРЗА можно классифицировать по параметрам режима работы сети, на которые они реагируют.

Токовые защиты.

Наибольшее распространение получили токовые защиты, поскольку именно повышенное значение тока является критерием такого частого вида нарушения режима работы как короткое замыкание. В основе токовой релейной защиты находится реле тока.

Традиционно используемыми являются реле электромеханического типа, состоящие из токовой катушки и подвижной электромагнитной системы, замыкающей контакты. На смену этим приборам пришли полупроводниковые устройства, а с развитием цифровых технологий и микропроцессорные системы релейной защиты.

Независимо от элементной базы, логика работы защит остаётся в принципе той же. Конечно, микропроцессорные системы способны реализовать более сложный и разветвлённый алгоритм действий.

В простейшем случае, на реле выставляется требуемая уставка – значение тока, при котором реле должно сработать. Первичными преобразователями тока являются измерительные трансформаторы или датчики тока.

К разновидности токовых защит относятся дифференциальные защиты, реле которых включается на разность токов. Дифференциальные токовые реле входят в комплект релейной защиты трансформаторов и шин подстанций.

Защиты по напряжению.

Среди самых распространённых представителей этого класса групповая секционная защита минимального напряжения.

Логика работы этой автоматики увязана с технологическим процессом, электропривод оборудования которого питается от одной секции подстанции. Автоматика минимального напряжения имеет двухступенчатое исполнение. Типовая последовательность работы выглядит следующим образом.

Секция, к которой подключены электродвигатели приводов механизмов технологического процесса (например, это могут быть механизмы котла тепловой электростанции), имеет два питания – от рабочего и резервного трансформаторов.

При отключении рабочего трансформатора срабатывает автоматика включения резерва (АВР). Через небольшой промежуток времени к секции подключается резервный трансформатор.

За время бестоковой паузы нагруженные механизмы успевают затормозиться. После подключения резервного трансформатора начинается самозапуск электродвигателей механизмов.

Повышенный ток, обусловленный групповым запуском двигателей, вызывает посадку напряжения на секции. При снижении напряжения до уставки первой ступени автоматики, происходит отключение наименее значимых для технологического процесса механизмов.

Делается это для того, чтобы облегчить запуск более важного оборудования и удержать станционный котёл (или другой агрегат) в работе.

Если это не помогает и напряжение, продолжая снижаться, достигает уставки второй ступени, отключается вторая группа оборудования. В этой ситуации в работе остаются только механизмы, обеспечивающие безаварийный останов всего технологического процесса (котла).

2012-2019 г. Все права защищены.

Органы и виды релейной защиты

Как известно,  релейная защита предназначена для скорейшего автоматического отключения неисправных или повреждённых элементов  электрической системы и своевременной сигнализации об отклонениях от нормального режима работы, но не требующих немедленного отключения.

Все функции релейной защиты исполняются следующими органами:

  1. Реле контроля и защиты.
    Пусковые органы ведут постоянный мониторинг  состояния и режима работы защищаемого участка электрической сети и срабатывают при возникновении коротких замыканий и ненормальных режимах работы. В электрических схемах реализуются в виде токовых реле, реле напряжения, мощности и др.
  2. Задачей измерительных органов является выявление места, характера повреждений  и  принятие своевременного решения о необходимости действия защиты. В электрических схемах реализуются в виде токовых реле, реле напряжения, мощности и др.
  3. Логическая часть представляет собой схему, которая запускается в работу пусковыми органами, производит анализ действий измерительных органов и, на основе полученных данных выполняет предусмотренные протоколом действия. В электрических схемах реализуются в виде таймеров, логических элементов, промежуточных и указательных реле.

Для предупреждения превышения величины тока на защищаемом участке электрической сети используется токовая защита.  Это один из вариантов релейной  защиты, которая срабатывает  при превышении величины тока на защищаемом участке сети, по отношению к току срабатывания или уставке.  Принято  различать максимальную токовую защиту и токовую отсечку.

Максимальная токовая защита (МТЗ) выполняется таким образом, что бы величина тока её срабатывания превышала  максимальный рабочий ток не менее чем  1,2 – 2 раза ( с учётом коэффициентов надёжности,  возврата и самозапуска реле ). Это позволит исключить возможность ложного срабатывания релейной защиты в условиях нормальной работы сети.

Величина уставки по времени срабатывания релейной защиты отличается от предыдущей и последующей на величину ступени селективности  ∆t 0,2 – 1 секунд. Такая настройка позволяет первой сработать релейной защите, которая наиболее близко расположена к месту КЗ, а в случае отказа первой, сработает предыдущая, но через промежуток времени равный порогу селективности.

Важной характеристикой МТЗ принято считать её коэффициент чувствительности. Его определяют как отношение величины тока междуфазного КЗ к величине фактического тока срабатывания защиты

ПУЭ определяет эту величину не менее 1,5.

Токовая отсечка ( ТО ) – это вариант быстродействующей релейной защиты, срабатывающей без задержек времени, работа которой направлена  на отключение наиболее тяжёлых вариантов КЗ. Коэффициент надёжности применяемых реле определяет величину кратности тока срабатывания в 1,1 и 1,2 по отношению к величине расчётного тока трёхфазного КЗ. Следовательно, зона уверенного действия токовой отсечки покрывает только 20 % всей защищаемой линии.

Такая ограниченность  зоны действия является существенным недостатком  работы ТО. Такое положение дел привело к тому, что ТО применяется только совместно с МТЗ в качестве второй ступени.

Работа защиты минимального напряжения ( ЗМН ) основана на контроле величины напряжения между фазами.  При выходе из строя хотя бы одной фазы равенство напряжений между фазами нарушается – срабатывает механизм отключения и как следствие отключается напряжение питания.

Газовая защита устанавливается с целью защиты маслонаполненных трансформаторов от внутренних повреждений. При возникновении КЗ внутри трансформатора закипает масло и начинается усиленное выделение газов, что ведёт к повышению давления, что в конечном итоге может привести к выходу трансформатора из строя.

Газы направляются через реле, и под их давлением поворачивается чувствительный элемент, что ведёт к замыканию контактов. Далее вступает в работу типовая схема на отключение трансформатора.

Дифференциальную защиту принято считать основной автоматизацией релейной защиты трансформаторов и автотрансформаторов. Она характеризуется  абсолютной селективностью и быстродействием.

Принцип действия релейной защиты такого типа основан на сравнении величин токов, например, на разных концах защищаемого участка. Как только на защищаемом участке возникнет ток КЗ, сразу сформируется разностный ток и сработает система отключения. Недостатком служит необходимость отключения сразу после срабатывания.

Таким образом, виды и органы релейной защиты позволяют определить место возникновения КЗ и других нештатных состояний электрической сети,  своевременно локализовать повреждённый  участок и исключить его из работы.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector