Как работает выпрямитель

Какими были первые выпрямители

Развитие электроснабжения начиналось с нуля. А это значит, что не было ни знаний, ни, тем более, оборудования для этого. Потребовалось почти столетие, чтобы появились современные полупроводниковые выпрямители. Они являются следствием исторически сложившейся инфраструктуры электроснабжения. А она, как известно, развивалась на основе переменного напряжения.

Электроснабжение на постоянном напряжении эффективнее, поскольку не сказываются потери в ЛЭП из-за индуктивности и емкости проводов. Но почти везде электроэнергия в сети соответствует переменному напряжению. Это происходит потому, что электроснабжение невозможно без изменения величины напряжения. А эту задачу до сих пор наиболее эффективно решает только трансформатор. Различие свойств электрических цепей с переменным и постоянным напряжением было сразу же замечено исследователями.

А поскольку эффективным источником электроэнергии является вторичная обмотка трансформатора, надо было так или иначе получить некое подобие постоянного напряжения на ее основе. На первом этапе развития электротехники появились только электромагнитные машины. Их и приспособили для выпрямления напряжения. Также было известно явление электролиза. Его тоже использовали для изготовления выпрямителей — электролитических.

Трансформаторные или импульсные преобразователи напряжений и токов

Share

Трансформаторные или импульсные преобразователи напряжения и тока. Что лучше?

style=»display:inline-block;width:728px;height:90px»
data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»4818068385″>

   Существует много различных схем выпрямителей — преобразователей напряжений и токов. Они предназначены для преобразования переменного напряжения синусоидальной или прямоугольной формы, сначала в пульсирующее напряжение, а затем в постоянное напряжение заданной величины.    В зависимости от назначения выпрямителя, его необходимой мощности, от параметров, предъявляемых к выходному напряжению, выбираются рабочие схемы выпрямителей — приобразователей напряжений.    Они могут быть как очень простыми и содержать минимум деталей, так и довольно сложными и содержать электронные схемы управления процессом выпрямления и стабилизации выпрямленного напряжения.    В быту, при изготовлении домашних самоделок, используются в основном выпрямители, преобразующие переменное напряжение бытовой сети 220 вольт в любое постоянное напряжение.

   Раньше, да и сейчас тоже, получение постоянного напряжения любой величины из переменного напряжения бытовой сети 220 вольт, осуществлялось по классической схеме.

   Последовательность преобразования: — бытовая сеть переменного напряжения 220 вольт 50 герц, – трансформатор, преобразующий его в переменное напряжение другой величины той же частоты, – выпрямительные диоды, преобразующие переменное напряжение в пульсирующее напряжение той же величины , – низкочастотный фильтр, состоящий из емкости и индуктивности, далее, если необходимо, — стабилизатор напряжения.    На выходе всей этой длинной цепи получается постоянное напряжение заданной величины.

Преимущество схемы: — простота конструкции, — используются недорогие детали, — большой запас надежности при аварийной ситуации.

Недостатки схемы: — большой вес и габариты трансформатора, дросселя и конденсаторов, а в целом и всего выпрямителя; — низкий КПД, не превышающий 60%.

На рисунке простейшая схема выпрямителя — преобразователя напряжения с простым стабилизатором напряжения.

   Здесь на выходе трансформатора полученное низкое переменное напряжение выпрямляется диодным мостом. Получается пульсирующее напряжение, которое с помощью конденсатора сглаживается. Затем это напряжение стабилизируется транзисторным стабилизатором.

    В настоящее время повсеместно внедряется другая схема выпрямителя — преобразователя  напряжений — импульсный блок питания ИБП.

   Последовательность преобразования: — бытовая сеть переменного напряжения 220 вольт , – выпрямительные диоды и конденсатор. Получается постоянное напряжение, величиной в 310 вольт. Далее, с помощью генератора, работающего на частоте 15 – 150 килогерц, это постоянное напряжение преобразуется в переменное напряжение прямоугольной формы.

   С помощью ферритового трансформатора, трансформируется в необходимое переменное напряжение прямоугольной формы.    Это переменное прямоугольное напряжение выпрямляется с помощью диодного мостика, фильтруется конденсатором и индуктивностью. На выходе получается постоянное напряжение заданной величины.

Преимущества схемы: — небольшие габаритные размеры деталей и в целом всего выпрямителя; — высокий КПД, доходящий до 90%;

Недостатки схемы: — дорогие комплектующие детали (транзисторы, конденсаторы, феррит); — из-за низкой надежности при аварии, необходимость применять сложные схемы защиты; — сильные электромагнитные поля излучения.

   На рисунке простая схема выпрямителя — преобразователя напряжения —  импульсного блока питания, ИБП, без цепей управления переключением транзисторов.

 Такая схема импульсного блока питания, и ей подобные,  это уже настоящая реальность…

style=»display:inline-block;width:728px;height:90px»
data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»4818068385″>

Share

1.2 Основные энергетические характеристики выпрямителя

Ими являются:

1. Среднее значение выпрямленного тока и напряжения Iн.ср. и Uн.ср..

2. Мощность нагрузочного устройства Pн.ср.= Iн.ср. · Uн.ср.

3. Амплитуда основного выпрямленного напряжения .

4. Действующие значения тока и напряжения первичной и вторичной обмоток трансформатора .

5. Типовая мощность трансформатора .

6. Коэффициент полезного действия , где РТР — потери в трансформаторе, Рд – потери в диодах.

Рисунок 15.1 — Схема (а) и динамические диаграммы напряжений и токов (б)

однополупериодного выпрямителя.

Для однополупериодного выпрямителя

Прямой ток диода

.

— коэффициент пульсации р ≈1,57.

Предельный электрический режим выпрямительного диода характеризует следующие величины: Максимальное обратное напряжение Uобр.max; максимальный прямой ток Inp.max, соответствующий Iвыпр.max; максимальная частота диодов , так как в случае превышения этой частоты диоды теряют свои вентильные свойства.

Для выпрямления однофазного тока широко применяют однополупериодные выпрямители и два вида двухполупериодных выпрямителя.

Тр. – трансформатор; ВГ – вентильная группа; СФ — сглаживающий фильтр;

Ст. – стабилизатор

Рисунок 15.2 — Структурная схема однофазного выпрямительногоустройства

Для надёжной работы диодов в выпрямителях необходимы два условия:

Если амплитудное значение выпрямленного напряжения превышает Uобр.max, то можно включить последовательно два и больше однотипных диодов. Обратное напряжение при этом будет распределяться обратно пропорционально сопротивлению диодов. Параллельно этим диодам включаются шунтирующие резисторы сопротивлением для выравнивания обратных напряжений.

Выпускаются полупроводниковые столбы. Это группа последовательно соединенных диодов, которые помещены в один корпус. Такие столбы выдерживают .

Двухполупериодные выпрямители бывают двух типов: мостовые и с выводом средней точки вторичной обмотки трансформатора. Наибольшее распространение получила мостовая схема.

Рисунок 15.3 — Схема (а) и динамические диаграммынапряжений и токов (б)

мостового выпрямителя

Коэффициент пульсаций р≈0,67. Максимальное обратное напряжение на каждом из закрытых диодов, как и у однополупериодного выпрямителя

Промышленностью выпускаются полупроводниковые выпрямительные блоки, в которых диоды соединены по мостовой схеме.

Двухполупериодный выпрямитель с выводом средней точки вторичной обмотки трансформатора можно рассматривать как сочетание двух однополупериодных выпрямителей, включённых на один и тот же нагрузочный резистор RН. В каждый из полупериодов напряжение Uab работает либо верхняя, либо нижняя часть выпрямителя.

При этом ток в резисторе Rн имеет то же направление, что и в предыдущий полупериод.

Рисунок 15.4 — Схема (а) и динамические диаграммы напряжений и токов (б) диаграммы напряжений и токов (в) выпрямителя с выводом средней трёхфазного выпрямителя с нейтральным (г) точки вторичной обмотки выводом трансформатора

Характеристики выпрямителя с выводом средней точки те же, что и у мостового выпрямителя, за исключением напряжения Uобр.max .

При коэффициент пульсаций р ≈0,67.

Трехфазные выпрямители применяют как выпрямители средней и большой мощностей. Существуют два основных типа выпрямителей: с нейтральным выводом и мостовой.

Здесь диоды работают поочередно, каждый в течение трети периода, когда потенциал начала одной из фазных обмоток более положительный, чем двух других.

Коэффициент пульсации р ≈ 0,25.

Трехфазный выпрямитель с нейтральным выводом служит для питания нагрузочных устройств, в которых Iн.ср ≈ сотни А, а Uн.ср ≈ десятки кВ.

Трехфазный мостовой выпрямитель (предложен в 1923 году А.Н.Ларионовым) по всем показателям превосходит рассмотренный трехфазный выпрямитель.

Рисунок 15.6 — Схема (а) и динамические диаграммы (б) напряжений и токов трёхфазного мостового выпрямителя

Диоды VD1, VD3, VD5 образуют положительный полюс на нагрузочном резисторе RН, а общая точка диодов VD2, VD4, VD6 – отрицательный полюс на нем. Коэффициент пульсации р = 0,057;

Следовательно, диоды в данном выпрямителе можно выбирать по обратному напряжению близкому к Uн.ср. КПД выпрямителя А.Н. Ларионова больше, чем КПД выпрямителя с нейтральным выводом, так как в мостовом выпрямителе, нет подмагничивания сердечника трансформатора постоянным током.

Критерии выбора выпрямителей

 Приобретая сложное техническое устройство ориентируются на его основные характеристики. Для выпрямителя к таким относятся:

  • Номинальное напряжение;
  • Выпрямленный ток;
  • Частота пульсаций.

Первый параметр обычно указывается двумя переменными. Одна – это напряжение до фильтра, вторая – после него.

Номинальный выпрямленный ток — это среднее значение. Он задается техническими условиями.

Качественным показателем каждого сетевого выпрямителя-стабилизатора напряжения и тока является пульсация. В зависимости от схемы устройства частота гармоники выходных параметров должна быть равна аналогичной величине питающей сети для однопериодных и удвоенному значению ее для двухполупериодных приборов.

Что касается многофазных выпрямителей, то у них этот параметр зависит от схемы и числа фаз.

Важными характеристиками таких приборов являются коэффициенты:

  1. Фильтрации;
  2. Пульсаций.

Первый – это отношение коэффициента на входе к аналогичной величине на выходе. Второй определяется как соотношение амплитуды гармонической составляющей напряжения или тока к их среднему значению.

Смотрим видео, критерии выбора прибора:

Еще одним параметром, на который ориентируются, выбирая выпрямитель, является нестабильность или колебания напряжения на его выходе. Этот параметр определяется как разница между реальным и номинальным значениями. Если же прибор используется без стабилизатора, то колебания определяются по отклонения напряжения в сети.

Обзор нескольких моделей

Оборудование этого класса выпускается различными производителями и представлено достаточно широко на отечественном рынке. Но не все модели пользуются большим спросом. Одни из-за своей высокой стоимости, вторые по причине низкого качества. Поэтому прежде, чем купить выпрямитель для дома следует внимательно изучить техническую документацию на различные виды устройств, а также ознакомиться с отзывами в сети. Часто в них можно найти много полезной информации. Не лишней будет и консультация со специалистом.

Чтобы несколько упростить выбор необходимого оборудования рассмотрим несколько самых популярных моделей выпрямителей для напряжения.

 Одним из них является прибор PRS380. Он способен преобразовать синусоидальное входное напряжение переменного тока в выходное постоянного. Выпрямитель оснащен разъемам для установки в полку 19», которые располагаются на задней панели корпуса.

Современная структура цепи прибора позволило свести потери к минимуму, получив компактное устройство небольшого веса. Сфера применения этого оборудования достаточно широка и рассчитана на все системы постоянного тока, как с аккумуляторами, так и без них.

Номинальная мощность прибора составляет 8000 Вт, а при необходимости ее повышения допускается параллельное подключение нескольких модулей.

Поскольку существуют выпрямители, которые не только устанавливаются на горизонтальных поверхностях, но и могут крепиться на стене, то стоит рассмотреть и такую модель.

Модель PSR06

Это прибор под маркой PSR06-W. Он оснащен дисплеем, установленным на передней панели и предназначенным для контроля значений напряжения и тока на выходе. Устройство отличается компактными размерами и предназначено для монтажа на стену.

При его создании были учтены современные технологии, поэтому прибор отличается широким диапазоном входного напряжения, позволяя получать синусоидальный ток с коэффициентов мощности равным 1.

Выпрямитель оснащен платой контроля и коррекции величин на входе и выполняет их настройку в течение 1,5 мс. Эта особенность позволяет устройству поддерживать заданное значение тока практически до КЗ. При этом настройка выполняется с использованием клавиш, расположенных на лицевой части корпуса. Допускается подключение температурного датчика для компенсации этого параметра при зарядке аккумулятора.

Что советуют специалисты

Выбирая данный прибор, обращают внимание не только на технические характеристики прибора, но и на его стоимость. Какую модель купить? Дешевую? Дорогую? Эти вопросы актуальны для всех

Но какие ответы на них дают специалисты?

Они отмечают, что выбор выпрямителя должен основываться на задачах, которые ему придется решать, а также особенностях конкретной сети. В некоторых случаях можно обойтись самой простой и недорогой моделью. Но для подключения сложного оборудования понадобиться более дорогое устройство.

Ламповые варианты

Такие механические и электролитические выпрямляющие устройства просуществовали несколько десятилетий до того времени, как появились электронные лампы. Но и они были ограничены потерями электроэнергии. Хотя и не связанными с коммутацией. Дело в том, что для работы лампы необходим предварительно созданный запас электронов.

А его не научились получать в лампах иначе, как раскаляя нить накала. Вот и получалось, что, несмотря на быстродействие, обычная лампа-диод расходовала слишком много электроэнергии на выпрямление напряжения. Но со временем была изобретена мощная ртутная лампа — ртутный выпрямитель. Она отличалась тем, что в ней возникал управляемый электрический разряд в парах ртути. Разряд существовал только на одной полуволне напряжения.


Ртутный выпрямитель

Это позволило довести мощность выпрямителя до значений, приемлемых для промышленного использования. И на основе ртутных выпрямителей были построены первые ЛЭП, работающие при постоянном напряжении. А во всех остальных электроприборах так и применялись электронные лампы-диоды. В 30-е годы ХХ века появились первые полупроводниковые выпрямители на основе селена. Они так и назывались — «селеновые выпрямители».


Структура селеновой выпрямительной пластины
Конструктивное исполнение селеновых выпрямителей

Однако характеристики этих выпрямителей оставляли желать лучшего. Поэтому поиски более эффективных технических решений продолжались и завершились появлением полупроводникового диода. Но его преимущества тоже относительны. Температура полупроводника не может превышать 130–150 градусов Цельсия. По этой причине все предшествующие виды выпрямителей имеют свою нишу для условий с высокой температурой и радиацией. При остальных условиях эксплуатации применяются диодные выпрямители.

Принцип действия прибора

В любом выпрямителе, независимо от его типа, применяются полупроводниковые элементы, свойства которых и обеспечивают преобразование переменного в постоянный. Будучи изготовленными из особых материалов, например, кристаллизированного германия или кремния с добавлением легирующих компонентов, эти элементы обладают способностью проводить ток только в одном направлении.

Смотрим видео о устройстве прибора:

В современных выпрямителях переменного потока применяют три типа полупроводниковых деталей:

Диод

Самый простой вариант полупроводникового элемента. Имеет два вывода, которые называются анодом и катодом. Функция диода в электрической схеме аналогична функции обратного клапана в системе трубопроводов: элемент пропускает электроток, направленный от анода к катоду, и закрывается, как только направление тока меняется на обратное.

Главными характеристиками диодов являются:

  • Максимальный ток;
  • Максимальное напряжение, которое удерживает запертый диод (в случае превышения допустимой величины будет иметь место пробой диода, при котором ток пойдет через элемент в обратном направлении);
  • Быстродействие или, иначе говоря, время, которое необходимо диоду для того, чтобы закрыться: от этой характеристики будет зависеть, с токами какой частоты сможет работать элемент;
  • Доля потерь электроэнергии, которая рассеивается в виде тепла.

Тиристор

Этот элемент устроен похожим образом, но кроме анода и катода он имеет управляющий электрод, по которому можно передавать сигнал на открытие или закрытие. Этим обусловлено второе название тиристора – управляемый диод.

Смотрим видео, простое зарядное устройство на тиристоре:

Перечень характеристик у тиристоров такой же, как у диодов, только к нему добавлены параметры управляющего сигнала. Часто в электротехнике диоды и тиристоры называют полупроводниковыми вентилями.

Транзистор

Этот полупроводниковый элемент позволяет с помощью маломощного управляющего сигнала осуществлять гибкое управление величиной пропускаемого тока большой мощности и его напряжением.

Самой простой версией однофазного полупроводникового выпрямителя является так называемый диодный мост:

Как видно, независимо от направления действия электродвижущей силы в источнике переменного, электрический ток на нагрузке всегда будет направлен в одну и ту же сторону. Одним из основных Недостатков данной схемы является пульсирующий вид выпрямленного тока, поэтому даже самые простые выпрямители не могут работать без применения сглаживающих конденсаторных фильтров.

Следует отметить, что сварочным выпрямителем называют не сам выпрямитель в чистом виде, а устройство, способное выдавать стабильный постоянный ток большой силы, который необходим для проведения сварочных работ.

Поэтому в этих приборах помимо непосредственно выпрямителя имеется еще и трансформатор. Кроме того, они могут оснащаться всевозможными фильтрами, управляющими платами, защитной и измерительной аппаратурой.

Если сравнивать сварочные выпрямители с преобразователями, то можно выделить несколько преимуществ:

  • Применение выпрямителя обеспечивает более стабильную электроразрядную дугу;

  • Значительно сокращается объем разбрызгиваемого металла;
  • Выпрямители имеют более высокий КПД;
  • Уменьшены потери холостого хода;
  • Обеспечивается более широкий диапазон регулирования силы сварочного тока;
  • Применение выпрямителя обеспечивает более широкие возможности по автоматизации процесса электросварки;
  • Уменьшается масса и габариты сварочных аппаратов.

Источники вторичного питания и стабилизаторы

Для получения электрической энергии нужного вида приходится преобразовывать электрическую энергию переменного тока в энергию постоянного тока (выпрямление) либо энергию постоянного тока – в энергию переменного тока (инвертирование). Выпрямление осуществляется с помощью устройств, называемых выпрямителями, а инвертирование производится инверторами. Выпрямители и инверторы являются вторичными источниками электропитания. Они состоят из функциональных узлов, выполняющих одну или несколько функций: выпрямление, инвертирование, стабилизацию, регулирование значений электрических характеристик.

5.2 Конверторы

Конвертором называют преобразователь постоянного тока одного напряжения в постоянный ток, имеющий другое значение напряжения.

В основном применяют два типа конверторов:

1) преобразователи постоянного напряжения с самовозбуждением;

2) импульсные преобразователи постоянного напряжения.

Преобразователь постоянного напряжения с самовозбуждением бывают малой и средней мощности. Структурная схема такого преобразователя изображена ниже.

Рисунок 15.27-Структурнаясхема преобразователя постоянного напряжения с самовозбуждением.

Преобразователь с самовозбуждением ПС превращает постоянное напряжение в переменное напряжение прямоугольной формы, которое с помощью трансформатора изменяется до нужного значения. После выпрямления в выпрямителе В оно подаётся на сглаживающий фильтр СФ, к выходу которого подключена нагрузка ZН.

В конверторах с самовозбуждением в качестве ключей применяют транзисторы с общим эмиттером, включаемым по двухтактной схеме.

Рисунок 15.28 — Релаксационный генератор импульсов прямоугольной формы

с трансформаторной положительной обратной связью

Для обеспечения прямоугольной формы генерируемых колебаний материал магнитопровода трансформатора должен иметь петлю гистерезиса прямоугольной формы. Частота переменного тока на выходе релаксационного генератора может достигать значений близких к 50 кГц. Поэтому силовые диоды для выпрямителя необходимо выбирать с учётом частоты переменного тока. В противном случае при выпрямлении напряжений с крутыми фронтами диоды теряют свои выпрямительные свойства и возможна потеря работоспособности конвертора.

Импульсные преобразователи постоянного напряжения (ИППН) регулируют выходное напряжение путём изменения параметров входных импульсов. Чаще всего применяют широтно-импульсную (ШИМ) и частотно-импульсную (ЧИМ) модуляцию при регулировании. ШИМ – это изменение длительности импульсов, а ЧИМ – изменение частоты импульсов.

Рисунок 15.29 — Схема (а) и динамические диаграммы тока нагрузки (б) импульсного однотактного преобразователя постоянного напряжения.

В качестве ключа используется тиристор. Между нагрузкой ZН и тиристором включён сглаживающий LC-фильтр. Диод необходим для пропускания тока нагрузки при выключенном тиристоре. Принцип действия данного ИППН таков: когда тиристор открыт, всё напряжение U поступает на сглаживающий фильтр и далее на нагрузку ZН; при этом диод VD не пропускает ток; когда тиристор закрыт, ток через нагрузку проходит за счёт энергии накопленной в конденсаторе СФ и в катушке LФ.

Однотактные ИППН работают при мощности не более 100 кВт. Если требуется мощность больше, то используют многотактные ИППН, которые содержат несколько параллельно включённых однотактных ИППН. Для уменьшения пульсаций тока в нагрузке тиристоры включают со взаимным сдвигом по фазе на угол 2π/n (n – количество однотактных ИППН). Поэтому тиристоры работают поочерёдно или с некоторым перекрытием.

В качестве примера ИППН ниже приведена схема импульсного источника питания, реализованная на микросхеме VIPerX7.

Рисунок 15.30-Принципиальная электрическая схема ИППН с обратной связью на основе VIPerX7

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *