кто первый открыл электрический ток

Содержание:

История изобретения электрогенератора Великие открытия человечества

 Электрогенератор — устройство, вырабатывающее электрическую энергию путем преобразования механической энергии вращения в электрическую энергию переменного или постоянного тока. Генератор в переводе с латыни означает производитель. Электрогенератор состоит из магнитной системы и системы проводников (катушек). Магнитная система, где используются в основном электромагниты, создает магнитное поле. Система проводников, вращаясь в магнитном поле, преобразует его в электрическое. Помимо этого, в генераторе имеется система отвода напряжения, связывающая генератор с разными потребителями электрического тока. Система состоит из коллектора, щеток, катушки здесь соединены определенным способом.

По типу привода, приводящих электрогенератор в движение, различают: турбогенератор, гидрогенератор, ветрогенератор, дизель- и бензо-генераторы. Турбогенераторы используются в основном на крупных промышленных электростанциях. В движение их приводит паровая турбина, либо газотурбинный двигатель. Во втором случае используют работу гидравлической турбины. Гидрогенераторы устанавливаются на крупных электростанциях, где используется энергия потока воды. Ветрогенератор приходит в движение за счет энергии ветра, их используют как на больших ветряных электростанциях, так и на небольших (частных). Приводом для дизель-генератора служит дизельный двигатель, соответственно для бензо-генератора — бензиновый. По виду выходного тока электрогенераторы делятся на генераторы постоянного и переменного тока.

Все генераторы отличаются своими конструктивными особенностями, но имеют общий принцип образования электромагнитного поля за счет взаимного вращения двух систем катушек или относительно постоянных магнитов. Генераторы постоянного тока длительное время являлись единственным типом источников электрической энергии.  Переменный ток индуктируется в обмотке якоря электрогенератора постоянного тока и с помощью электромеханического выпрямителя (коллектора) преобразуется в постоянный ток. Следует отметить, что процесс выпрямления тока ведет к быстрому износу коллектора и щеток при условии высокой частоты вращения якоря самого генератора. В зависимости от характера возбуждения различают генераторы постоянного тока: самовозбуждения и независимого возбуждения. Генераторы первого типа (магнитоэлектрические) возбуждаются постоянными магнитами, из них выполнены полюса машины. Генераторы электромагнитного возбуждения имеют обмотку возбуждения, размещенную на главных полюсах, и независимый источник питания. Генераторы постоянного тока широко используют на транспорте, судах, предприятиях электролизной и металлургической промышленности, на электростанциях в качестве источников постоянного тока и возбудителей синхронных генераторов. Их мощность достигает десятка мегаватт.

Существует несколько типов генераторов переменного тока. Индукционные генераторы состоят из электромагнита (либо постоянного магнита), образующего магнитное поле, а также обмотки, где индуцируются переменная электродвижущая сила (ЭДС). Амплитуда ЭДС индукции пропорциональна числу витков в рамке и амплитуде переменного магнитного потока (через каждый виток). Для усиления магнитного потока используют специальную магнитную систему из двух сердечников, выполненных из электротехнической стали. В пазах одного сердечника находятся обмотки, которые создают магнитное поле, а в пазах другого — обмотки, где индуцируется ЭДС. Один сердечник вместе с обмоткой вращается вокруг вертикальной или горизонтальной оси. Его называют ротором. Статором называют второй, неподвижный сердечник с обмоткой. Чтобы обеспечить наибольший поток магнитной индукции, зазор между сердечниками ротора и статора стараются делать наименьшим. В крупных промышленных генераторах ротором является электромагнит, который вращается. Обмотки, где индуцируется ЭДС, находятся в пазах статора, они неподвижны. Неподвижные пластины (щетки), прижатые к кольцам, которые присоединены к концам обмотки, осуществляют связь ротора с внешней цепью. Бывают однофазные и трехфазные генераторы переменного тока.

История создания генератора

История создания генератора.

 В 1833 году русский ученный Э.Х.Ленц выдвинул теорию об обратимости эклектических машин. Он предположил, что если на одну и туже машину подать электричество, то она станет работать как электродвигатель, а если ее роутер с помощью другой машины привести в движение ,то получиться генератор эклектического тока. А в 1987 году, бывшим членом комиссии испытывающей действие эклектического мотора Якоби доказал теорию обратимости эклектической машины.

 Вторым этапом 1851-1867 гг. было создание генераторов, используемых электромагниты вместо постоянных магнитов. Что позволило увеличить мощность электрической машины.

 .Подобная машина была создана англичанином Генри Уальдом в 1863 г. В ходе эксплуатации данного вида генератора выяснилась уникальная возможность. Генераторы, вырабатывая электричество для потребителя, могли одновременно снабжать током и свои электромагниты. Как выяснилось, это возможно благодаря остаточному магнетизму, сохраняющемуся в сердечнике электромагнита даже после выключения тока. А значит, генератор с самовозбуждением может давать ток при запуске из состояния покоя. Основываясь на данном открытии, в 1866-1867гг изобретатели в разных уголках мира получили патенты на самовозбуждающиеся генераторы.

 В 1873 году на Венской международной выставке была произведена следующая демонстрация. Две одинаковые машины были соединены между собой километровыми проводами. Первая машина, служившая генератором электроэнергии, приводилась двигателем внутреннего сгорания в движение. Вторая являлась источником питания для насоса, получив по проводам электричество от первой. Это стало наглядной демонстрацией открытой Ленцем обратимости эклектических машин и легло в основу передачи энергии на расстояние.

 Электрическая индукция или эффект трибоэлектрический, основанный на возникновении заряда, возникающий в следствии механического контакта двух диэлектриков, являются механизмом для выработки заряда.

 Электрические генераторы, имеющие низкую мощность, имели низкую эффективность и проблемы с изоляцией так и никогда не получили масштабного использования в промышленности. Дожившие до нашего времени эклектические машины — это электрофорная машина, а также генератор Ваан де Графа.

Обжиг кирпичей сложный процесс производства

После обжига кирпичи приобретают водостойкость. Обжиг – не такой уж простой процесс. Поместив кирпич в огонь, прочным он не станет. До достижения конкретной степени спекания должна быть постоянная температура (900–1 150 градусов по Цельсию) в течение нескольких часов (8–15). Температура зависит от сорта глины, который используется. Чтобы не возникло трещин, после обжига требуется медленное охлаждение.

Обжиг кирпича

Если кирпичи обожжены мало, то они становятся мягкими и крошатся. Если чересчур сильно – теряют при обжиге свою форму и могут сплавиться в стеклообразное вещество. Для правильного обжига должна быть печь, в которой постоянно будет поддерживаться требуемая температура.

Самой распространенной кирпичной формой был квадрат, у которого стороны по 30 и 60 сантиметров, а толщина – от 3 до 9 сантиметров. Их называли плинфами (слово пришло из греческого). В Древней Греции и Византии они пользовались большим спросом. Плинфа была похожа на плоский брусок. В нашем восприятии больше напоминает плитку, чем кирпич.

Когда кирпич появился на Руси

Древняя Русь узнала о кирпиче благодаря византийской культуре. Строители из Византии привезли и раскрыли секрет производства кирпича. Приехали они вместе с другими мастерами, учеными и священниками в 988 году после крещения Руси. Первым кирпичным сооружением стала здесь десятинная церковь в Киеве. Первые кирпичные строения в Москве появились в 1450 году, и лишь через 25 лет возвели первый завод в России (1475 г.), производивший кирпич. До этого кирпичи делали преимущественно при монастырях. В 1485 началась перестройка Московского Кремля, где и применили кирпич. Строительством кремлевских стен и храмов руководили итальянские мастера. Следующим этапом стало возведение кирпичного Кремля в Нижнем Новгороде (1500 г.). Похожий был построен в Туле в 1520 году.

Электрические токи в природе

Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин. В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю. Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Изобретения и научные работы Николы Тесла

Переменный ток

С 1889 года Тесла приступил к исследованиям токов высокой частоты и высоких напряжений. Изобрёл первые образцы электромеханических генераторов ВЧ (в том числе индукторного типа) и высокочастотный трансформатор (трансформатор Теслы, 1891), создав тем самым предпосылки для развития новой отрасли электротехники — техники ВЧ.

В ходе исследований токов высокой частоты Тесла уделял внимание и вопросам безопасности. Экспериментируя на своём теле, он изучал влияние переменных токов различной частоты и силы на человеческий организм

Многие правила, впервые разработанные Теслой, вошли в современные основы техники безопасности при работе с ВЧ-токами. Он обнаружил, что при частоте тока свыше 700 Гц электрический ток протекает по поверхности тела, не нанося вреда тканям организма. Электротехнические аппараты, разработанные Теслой для медицинских исследований, получили широкое распространение в мире.

Эксперименты с высокочастотными токами большого напряжения привели изобретателя к открытию способа очистки загрязнённых поверхностей. Аналогичное воздействие токов на кожу показало, что таким образом возможно удалять мелкую сыпь, очищать поры и убивать микробы. Данный метод используется в современной электротерапии.

Теория полей

12 октября 1887 года Тесла дал строгое научное описание сути явления вращающегося магнитного поля. 1 мая 1888 года Тесла получил свои основные патенты на изобретение многофазных электрических машин (в том числе асинхронного электродвигателя) и системы передачи электроэнергии посредством многофазного переменного тока. С использованием двухфазной системы, которую он считал наиболее экономичной, в США был пущен ряд промышленных электроустановок, в том числе Ниагарская ГЭС (1895), крупнейшая в те годы.

Тесла демонстрирует принципы радиосвязи, 1891 г.

Радио

Тесла одним из первых запатентовал способ надёжного получения токов, которые могут быть использованы в радиосвязи. Патент U.S. Patent 447 920, выданный в США 10 марта 1891 года, описывал “Метод управления дуговыми лампами” (“Method of Operating Arc-Lamps”), в котором генератор переменного тока производил высокочастотные (по меркам того времени) колебания тока порядка 10 000 Гц. Запатентованной инновацией стал метод подавления звука, производимого дуговой лампой под воздействием переменного или пульсирующего тока, для чего Тесла придумал использовать частоты, находящиеся за рамками восприятия человеческого слуха. По современной классификации генератор переменного тока работал в интервале очень низких радиочастот.

В 1891 году на публичной лекции Тесла описал и продемонстрировал принципы радиосвязи. В 1893 году вплотную занялся вопросами беспроволочной связи и изобрёл мачтовую антенну. В 1893 году Тесла построил первый волновой радиопередатчик, опередив Маркони и Попова на несколько лет. В 1943 году Верховный суд США подтвердил первенство Теслы в этом изобретении.

Статуя Николы Теслы перед Святого Саввы Православной Церкви, Манхэттен, Нью-Йорк

Резонанс

Катушки Тесла до сих пор иногда используются именно для получения длинных искровых разрядов, напоминающих молнию. В 1998 году инженер из Стенфорда Грег Лей продемонстрировал публике эффект “молнии по заказу”, стоя в металлической клетке под гигантским контуром Тесла и управляя молниями с помощью металлической “волшебной палочки”. Недавно он развернул кампанию по сбору средств на строительство ещё двух “башен Тесла” на юго-западе США. Проект обойдётся в 6 миллионов долларов. Однако укротитель молний надеялся вернуть расходы, продав установку Федеральному управлению авиации. С помощью неё авиаторы смогут изучать, что происходит с самолётами, попавшими в грозу.

В одном из научных журналов Тесла рассказывал об опытах с механическим осциллятором, настроив который на резонансную частоту любого предмета, его можно разрушить. В статье Тесла говорил, что он подсоединил прибор к одной из балок дома, через некоторое время дом стал трястись, началось небольшое землетрясение. Тесла взял молоток и разбил изобретение. Приехавшим пожарным и полицейским Тесла сказал, что это было природное землетрясение, своим помощникам он велел молчать об этом случае.

История

В природе электричество встречается относительно редко: оно генерируется только несколькими животными и существует в некоторых природных явлениях. В поисках искусственной генерации потока электронов ученые поняли, что можно заставить электроны проходить через металлическую проволоку или другой проводящий материал, но только в одном направлении, так как они отталкиваются от одного полюса и притягиваются к другому. Так родились батареи и генераторы постоянного тока. Изобретение приписывается, в основном, Томасу Эдисону.

В конце 19-го века другой известный ученый, Никола Тесла, разрабатывал способы получения переменного тока. Основными причинами работ в этой области явились обнаруженные недостатки постоянного тока при передаче электроэнергии на большие дистанции. Оказалось, что для переменного тока гораздо проще повысить напряжение передающих линий, тем самым уменьшив потери и получив возможность транспортировки больших объемов электрической энергии, а эффективно повысить напряжение на линиях с постоянным током в те времена было неосуществимо.

Для получения переменного тока Тесла использовал вращающееся магнитное поле. Если МП изменяет направленность, направление электронного потока также варьируется, и генерируется переменный ток.

Изменение направления в электронном потоке осуществляется очень быстро, много раз в секунду. Измерения частоты производятся в герцах (равных циклам в секунду). Таким образом, переменный ток частоты 50 Гц можно представить, как выполнение 50 циклов в секунду. В каждом цикле электроны изменяют направление и возвращаются к первоначальному, поэтому поток электронов изменяет направленность 100 раз в секунду.

Петр I, Петербург и кирпичные заводы

В Петербурге в числе первых кирпичных домов оказались палаты адмиралтейского советника Кикина, построенные в 1707 году. Через три года на Троицкой площади – дом канцлера Г. П. Головина (1710). На следующий год соорудили дворец Натальи Алексеевны, царевны, сестры Петра I. Далее – строительство Зимнего и Летнего дворцов самого Петра I (1712). Достаточно долго, в течение семи лет производили строительство Дворца Меньшикова. Несколько раз он перестраивался. Но, несмотря ни на что, первоначальный облик его был сохранен. Нынче – это музей, филиал Государственного Эрмитажа.

Первые Росссийские кирпичи. Петр 1

Петр I своим указом разрешил строительство новых кирпичных заводов, в которых производители должны были ставить клейма на свои кирпичи для того, чтобы легче было найти бракоделов. Ведь прочность этого строительного материала определялась очень просто. Всю партию продукции сбрасывали с телеги. Если хотя бы три кирпича разбивались, то вся продукция считалась некачественной. Кирпичное производство развивалось, по всей России собирали мастеров. В то же время был запрет на постройку каменных зданий в иных городах. Нарушившим этот указ существовала угроза отправки в ссылку и конфискация имущества. Многие каменщики в поиске работы приходили в Петербург. Всяк входивший или въезжавший должен был оставить кирпич, так называемый пропуск в город. Именно на это и рассчитывал Петр I. Есть предположение, что Каменный переулок был построен из привезенных и принесенных кирпичей.

Чем постоянный ток отличается от переменного и каков его путь от источника до потребителя

Итак, переменным называют ток, способный меняться по направлению и величине в течение определенного времени

Параметры, на которые при этом обращают внимание, это частота и напряжение. В России в бытовых электрических сетях подают переменный ток, имеющий напряжение 220 В и частоту 50 Гц

Частота переменного тока — это количество изменений направления частиц определенного заряда за секунду. Получается, что при 50 Гц он меняет свое направление пятьдесят раз, в чем постоянный ток отличается от переменного.

Его источником являются розетки, к которым подключают бытовые приборы под различным напряжением.

Переменный ток начинает свое движение от электрических станций, где имеются мощные генераторы, откуда он выходит с напряжением от 220 до 330 кВ. Далее переходит в которые находятся вблизи домов, предприятий и остальных конструкций.

В подстанции ток попадает под напряжением 10 кВ. Там он преобразовывается в трехфазное напряжение 380 В. Иногда с таким показателем ток переходит непосредственно на объекты (где организовано мощное производство). Но в основном его снижают до привычных во всех домах 220 В.

Как развивалась кирпичная промышленность

Технологическое производство кирпича продолжало оставаться примитивным и трудоемким до 19 века. Формованием кирпича занимались вручную, сушили его только в летнюю пору, обжиг производили в напольных печах-времянках, выложены которые были из высушенного кирпича-сырца.

Еще один клейменный кирпич

В середине 19 столетия активно начала развиваться кирпичная промышленность. Появляются современные заводы, которые производят кирпич нашего времени. Сегодня с уверенностью можно сказать, что выпуск кирпича широк и разнообразен: выпускаются свыше пятнадцати тысяч различных сочетаний, форм, размеров, фактур поверхности и цветов. А также кирпич может быть полнотелым и пустотелым, поризованным, керамическим, с теплозащитными свойствами, рядовым, фасонным, лицевым, каминным, одинарным, двойным, утолщенным и другими. И построить соответственно из него можно все, что угодно: от простого столба до высотного здания необычной формы… С ним удобно работать, он считается прочным материалом, долговечным, красивым и экологичным.

Так же рекомендуем к прочтению:

  • Что такое состаренный кирпич
  • Из какого кирпича лучше выложить тандыр
  • Кладка керамическийх блоков

Самый древний строительный материал. История развития

История кирпича началась очень давно, с того самого времени, когда люди стали обжигать посуду. Именно тогда было положено начало и современному керамическому производству.

Древнее Египетское кирпичное строение

Особенную гордость вызывает кирпичное строительство Древнего Египта и Месопотамии, которые создавали сложные элементы конструкций. Возьмем, например, Вавилонскую башню, являющуюся одной из семи чудес света. Ее остатки были обнаружены на стыке эпох (19-го и 20-го столетий). Это было кирпичное сооружение в семь ярусов, облицовка его стен была сделана голубым глазурованным кирпичом. Можно сделать предположение, что тысячи лет назад на Востоке уже существовали технологии, которые позволяли изготавливать и обжигать кирпичи разных видов, аналогичных современным рядовым и лицевым. Но в античности бедные люди строили свои жилища из кирпича, высушенного на солнце, а не из обожженного. Наверное, впоследствии технику эту как-то утратили.

Генератор переменного тока — Генератор переменного тока состоит он из неподвижной части, которая называется статор или якорь и вращающейся части ротор или индуктор

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части — ротор или индуктор. В генераторе переменного тока ротор — это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя. Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. Промышленные генераторы являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности и производителя имеет 2 главные составляющие. Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию. К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.

Увековечение памяти Николы Тесла

Во многих странах есть памятники Николе Тесле, например в Нью-Йорке (см выше), в аэропорту Белграда и около здания Белградского университета.. Именем Теслы названа единица измерения магнитной индукции в системе СИ. Выпущена юбилейная сербская монета к 150-летию Теслы, 2006.

Тесла изображен на банкноте СФРЮ 1978 г. В центре Загреба, столицы Хорватии, есть улица имени Николы Теслы, на которой установлен памятник великому учёному.

В Хорватии, в курортном городе Пореч (хорв. Poreč), расположенном на западном побережье полуострова Истрия, есть набережная имени Николы Теслы. Именем Теслы названы улицы в Шибенике, Сплите, Риеке, Вараждине. Аэропорту в белградском пригороде Сурчин присвоено имя Николы Теслы.

Памятник Николе Тесла у Ниагарского водопада

Заключение

В научном мире, в нашем случае в физике, честь учёным и инженерам отдают, назвав какое-либо явление или величину его именем. Так и произошло с Николой Теслой, не смотря на все его изобретения, вклад в науку и гениальный ум его именем названа лишь единица измерения индукции магнитного поля – Тесла (Тл). Однако выше приведён не полный список открытий великого учёного, к этому следует отнести различные выступления и демонстрации, где Никола Тесла зажигал лампочки, пропуская ток через себя или опыты с «холодным огнём», который был призван заменить воду и банные процедуры.

Из-за подобных демонстраций в наше время возникают домыслы и суждения о его вкладе и открытиях в электричестве, которые нельзя доказать. Его современные фанаты уверено утверждают о незаслуженном забытие и банкротстве автора беспроводной передачи электричества. Связывают это с давлением спецслужб, правящих кланов того времени и прочим. В связи с отсутствием финансирования изобретателя в те годы большинство открытий осталось утраченными, а часть того что изобрёл Тесла его фанаты считают засекреченными.

Вот мы и рассмотрели все величайшие открытия и изобретения Николы Тесла. Напоследок рекомендуем посмотреть видео, на котором наглядно демонстрируются наиболее важные творения изобретателя:

Материалы по теме:

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках? Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток — трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector